<p dir="ltr">Single-molecule magnets (SMMs) based on dysprosocenium cations, [Dy(Cp<sup>R</sup>)<sub>2</sub>]<sup>+</sup> (Cp<sup>R</sup> = substituted cyclopentadienyl), have set record effective energy barriers to magnetic reversal (<i>U</i><sub>eff</sub>) and temperatures at which open magnetic hysteresis is observed (<i>T</i><sub>H</sub>), due to their highly axial crystal fields (CFs) and rigid ligand frameworks. Dysprosium bis(amide) cations, [Dy(NR<sub>2</sub>)]<sup>+</sup> (R = bulky silyl, aryl), can potentially show superior SMM properties as more charge-dense N-donor atoms can enforce stronger axial CFs to increase <i>U</i><sub>eff</sub>, but these more flexible ligands can also promote under-barrier magnetic relaxation processes that diminish <i>T</i><sub>H</sub>. Here we aim to combine the favourable SMM properties of each ligand in a single complex, namely [Dy{N(Si<sup>i</sup>Pr<sub>3</sub>)<sub>2</sub>}(Cp*)][Al{OC(CF<sub>3</sub>)<sub>3</sub>}<sub>4</sub>] (<b>1-Dy</b>; Cp* = C<sub>5</sub>Me<sub>5</sub>). We find that the mixed ligand system in <b>1-Dy</b> provides large magnetic anisotropy to give <i>U</i><sub>eff</sub> = 2382(26) K, exceeding any dysprosium Cp<sup>R</sup>-based SMM reported to date, and only bettered by the dysprosium bis(amide)-alkene complex [Dy{N(Si<sup>i</sup>Pr<sub>3</sub>)[Si(<sup>i</sup>Pr)<sub>2</sub>C(CH<sub>3</sub>)=CHCH<sub>3</sub>]}{N(Si<sup>i</sup>Pr<sub>3</sub>)(Si<sup>i</sup>Pr<sub>2</sub>Et)}][Al{OC(CF<sub>3</sub>)<sub>3</sub>}<sub>4</sub>]. However, a combination of the bent N–Dy–Cp*<sub>cent</sub> (<i>ca</i>. 152.5(2)°) and flexible amide substituents of <b>1-Dy</b> limits <i>T</i><sub>H</sub> to 73 K, far below the record <i>T</i><sub>H</sub> value of 100 K for the bis(amide)-alkene. This work shows that dysprosium SMMs containing one π-aromatic and one monodentate ligand can have larger <i>U</i><sub>eff</sub> values than <i>bis</i>-π-aromatic complexes, but in common with dysprosium bis(amide) complexes they show a greater sensitivity of inter-ligand angle towards under-barrier relaxation processes. Hence, this new class of dysprosium complexes are promising candidates for high-temperature SMMs, but the full potential of this strategy will only be realized with exquisite control of molecular geometry.</p>