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• Manual annotation and analysis of histology whole slide 
images (WSI) is extremely labour intensive

• We believe that the application of deep learning (DL) 
methods can greatly improve analysis 

• Existing DL methods have not been extensively applied to 
wound histology

• This work has the potential to produce a first-in-class tool 
to significantly augment wound regeneration research

1. Introduction & Motivation
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• Initial framework consisted of a single ResNet101-UNet[1]
block

• Parameters: N=6 WSI (Box 2) training set, supervised 
approach, data augmentation and transfer learning 
(ImageNet pre-training) 

• We demonstrate that our initial framework produces 
accurate segmentations for dominant and some less 
dominant tissue types (Box 4 & 5)

• Further optimisation is required to enhance our framework’s 
performance for less dominant tissue types 

• Refined hypothesis: HTF will improve segmentation 
performance for less dominant tissue types (Box 6)

• To the best of our knowledge, we apply DL methods to 
segment and analyse tissue histology WSI holistically form 
the first time

• Our results present strong groundwork for future 
development and application of DL-based tools in wound 
healing research

7. Conclusion

• Further development to optimise the framework to segment 
14 classes in dataset 2

• Proposed framework consists of three ResNet101-UNet[1]
blocks (Box 4) in sequence

• Parameters: N=8 WSI (Box 2) training set, WSI tiled inputs, 
decreasing tile size with 50% overlapping stride, supervised 
approach, data augmentation and transfer learning 
(ImageNet pre-trained)

• We hypothesise that this approach will improve fine 
detailed information capture (i.e. less dominant tissue type 
classes) whilst maintaining global context of the wound

6. Future Development - Hierarchy of 
Tiles Framework (HTF)

• Accurate segmentation for dataset 1 (mIoU 0.449) - 8 
classes (6 key tissue types, artefacts and background)
o Dominant tissue types accurately segmented (>60%) –

dermis, granulation tissue and blood clot
o Some less dominant tissue types also accurately 

segmented (>80%) – neo-epidermis and hair follicle

• Accurate segmentation for dataset 2 (mIoU 0.412) - 14 
classes (12 key tissue types, artefacts and background)
o Dominant tissue types accurately segmented (>70%) –

dermis, granulation tissue and blood clot
o Some less dominant tissue types accurately segmented 

(>70%) – neo-epidermis, hair follicle and muscle

• Performance maintained between datasets for same initial 
framework, despite dataset 2 possessing increased 
complexity with 6 further classes

5. Discussion - Comparison of 
Datasets 1 & 2 Segmentation Results
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3. Method - Simplified Framework Overview
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2. Method – Datasets
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Example WSI – Dataset 11 Ground Truth

Segmentation Mask | mIoU 0.449
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4. Results - Initial Framework 
Segmentation of Datasets 1 & 2
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