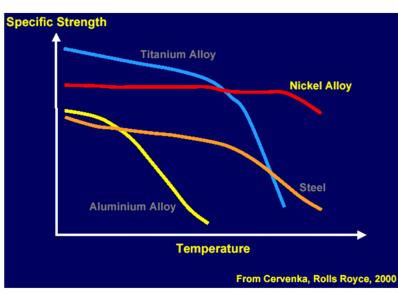
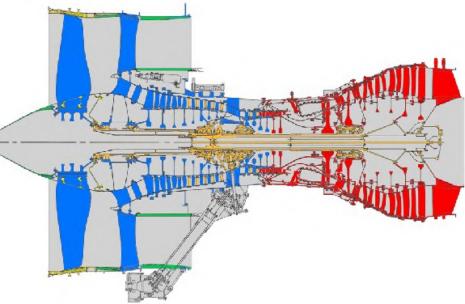
Course goal: Define the term 'Superalloys' and describe the three main types currently being used. Focus on Ni-base superalloys, understand their complex chemistry, processing and in-service performance.

Learning outcomes:


- Define the term 'Superalloys' and summarise the advantages and disadvantages of Fe, Ni, and Co base materials, as well as their different applications.
- Summarise the complexity of Ni superalloy chemistry, and how processing and heattreatments can be used to improve material properties. Explain some of the reasoning behind the different categories of Ni superalloys.
- Describe the degradation processes that affect the in-service properties of Ni superalloys (eg. corrosion, SCC, oxidation, hot-corrosion, etc.)



Superalloys have been and will be essential for rocket engines to power space flights.

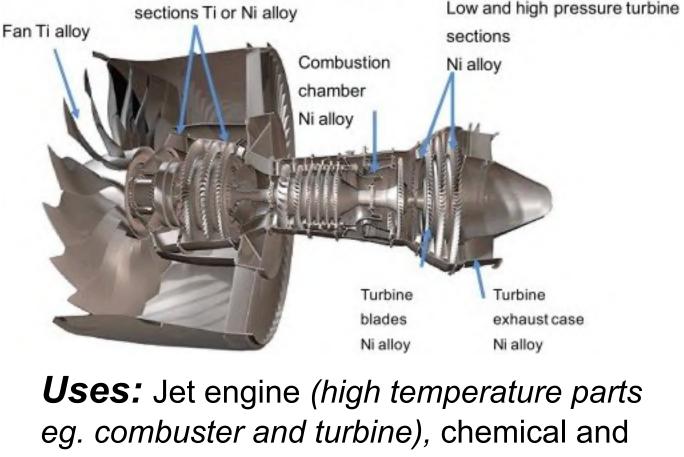
Superalloys

- **Definition:** Alloys that exhibit superior strength, temperature capability and environmental survivability as compared to ordinary (moderately alloyed) alloys.
- For use when stainless and low alloy steels just won't meet performance requirements.
- Most important property is maintaining strength at high temperature!

Fe-Base Superalloys

Properties:

- Least expensive.
- Ni, Cr, etc. enhancements to stainless steel compositions.
- Chromia scale formation to protect against aqueous corrosion and oxidation.
- High RT strength and moderate improvement in elevated temperature strengths.

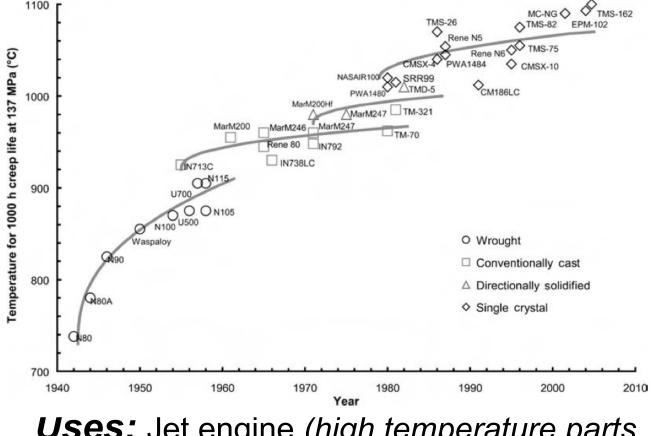


Uses: steam turbine blades (high Cr), aircraft bearings (high wear application).

Ni-Base Superalloys

Properties:

- Ni-base with significant amounts of Cr, Co, etc., as well as Fe.
- Increased high temperature strength.
- Additions of AI and Ti \rightarrow creep and thermal fatigue resistance.
- Enhanced corrosion and oxidation (& "Hot Corrosion") resistance.
- "A highly engineered class of materials"


Low and high-pressure compressor

eg. combuster and turbine), chemical an oil and gas industries *(highly corrosive environment eg. pipes, valves)*

Ni-Base Superalloys

Properties:

- Ni-base with significant amounts of Cr, Co, etc., as well as Fe.
- Increased high temperature strength.
- Additions of AI and Ti → creep and thermal fatigue resistance.
- Enhanced corrosion and oxidation (& "Hot Corrosion") resistance.
- "A highly engineered class of materials"

Uses: Jet engine (*high temperature parts eg. combuster and turbine*), chemical and oil and gas industries (*highly corrosive environment eg. pipes, valves*)

Co-Base Superalloys

Properties:

- Co-base plus Cr, Ni, C and other elements.
- Hardened by carbide precipitation (and solid solution hardening).
- Lower strength but some higher temp. capability.
- Superior oxidation, hot-corrosion resistance, thermal fatigue resistance, weldability.

Uses: Gas turbine blades (*high T, lower stress*), medical applications, space vehicles, rocket motors.

Ni-base Superalloys

- Nickel
- Density: 8900 [kg m⁻³]
- Melting point: 1455°C
- 5th most abundant element on earth.
- FCC crystal structure

1 2	1 H 1.008 3 Li	2 Be		6 C 12.01	-Atom -Syml -Atom					Metal Semi Nonn	metal		13 5 8	14 Č	15 N	16 0	17 9 F	18 2 He 4.003 10 Ne
3	6.941 11 Na 22.99 19	9.012 12 Mg 24.31 20	3	4	5	<u>6</u> 24	7 25	\$ 26	9	14	11 29	12 30	10.81 13 Al 26.98 31	12.01 14 Si 28.09 32	14.01 15 P 30.97 33	16.00 16 S 32.07 34	19.00 17 C1 35.45 35	20.18 18 Ar 39.95 36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
_	<u>39.10</u> 37	40.08 38	44.96 39	47.88 40	50.94 41	52.00 42	54.94 43	<u>55.85</u> 44	58.93 45	58.69	63.55 47	65.39 48	<u>69.72</u> 49	72.61	74.92 51	78.96	79.90 53	83.80 54
5	Rb 85.47	87.62	Y 88.91	2r 91.22	Nb 92.91	Mo 95.94	7C 98.91	Ru 101.1	Rh 102.9	Pd 106.4	Ag 107.9	Cd 112.4	In 114.8	Sn 118.7	Sb 121.8	Te 127.6	I 126.9	Xe 131.3
6	55 Cs 132.9	56 Ba 137.3	71 Lu 175.0	72 Hf 178.5	73 Ta 180.9	74 W 183.8	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 T1 204,4	82 Pb 207.2	83 Bi 209.0	84 Po 209.0	85 At 210.0	86 Rn 222.0
7	87 Fr	88 Ra	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110	111 Uuu	112	113	114	115	116 Uuh	117	118 Uuo
I	223.0	226.0	262.1	261.1	262.1	263.1	264.1	265.1	268	269	272	277		289	_	289		293
		6	57 La 138.	9 140. 90	1 140.1	9 144.	1 Pn 2 146.9 93	94	n Ei 4 152.	1 G0	d Th 3 158.1	9 162.9 98	5 164.	9 167.	r Tn 3 168.	n Yb 9 173.0	0	
		7	A 227,	c T] 0 232.	-	L U 0 238.	0 237.0		1 An 1 243	n Cn 1 247		t Cf	1 252		n M 1 258			(c) 1998 romor Paul

Why Ni-base Superalloys for HT?

- Why Ni-base superalloys for a high temperature material? ... ullet
- Let's consider (dimensionless) creep shear strain rate in terms of T/T_m : •

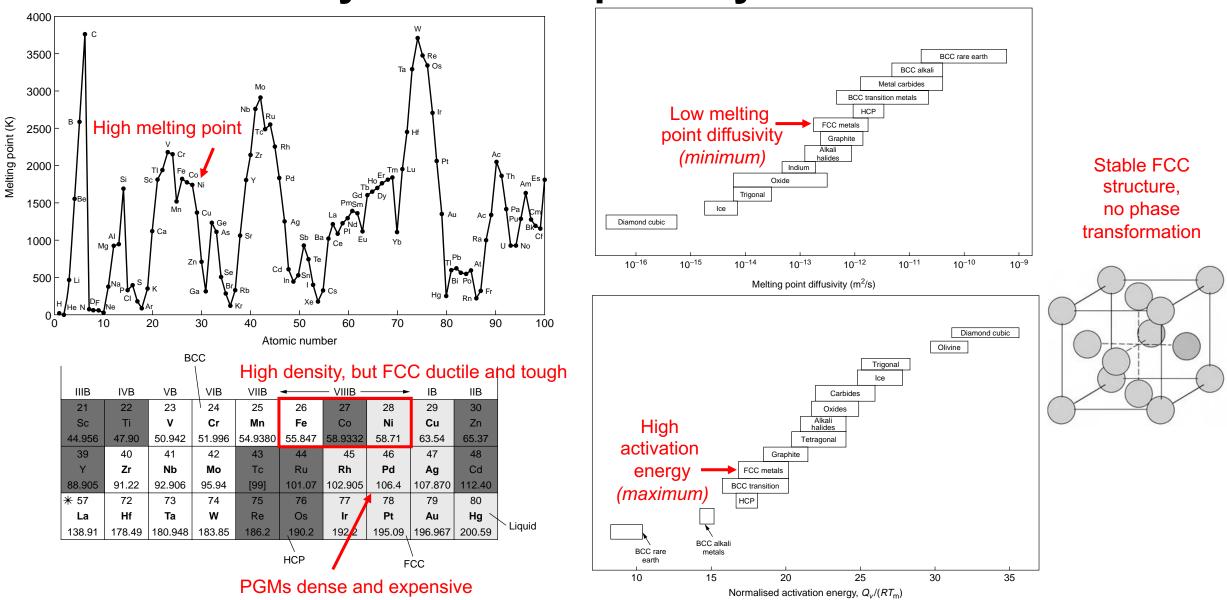
$$\overline{\dot{\gamma}} = \frac{\dot{\gamma}\Omega^{2/3}}{D_{T_{\rm m}}} \propto \Omega^{2/3} \exp\left\{-\frac{Q_v}{RT_{\rm m}}\left(\frac{T_{\rm m}}{T}-1\right)\right\}$$

$$\overline{\gamma} - dimensionless creep shear strain rate$$

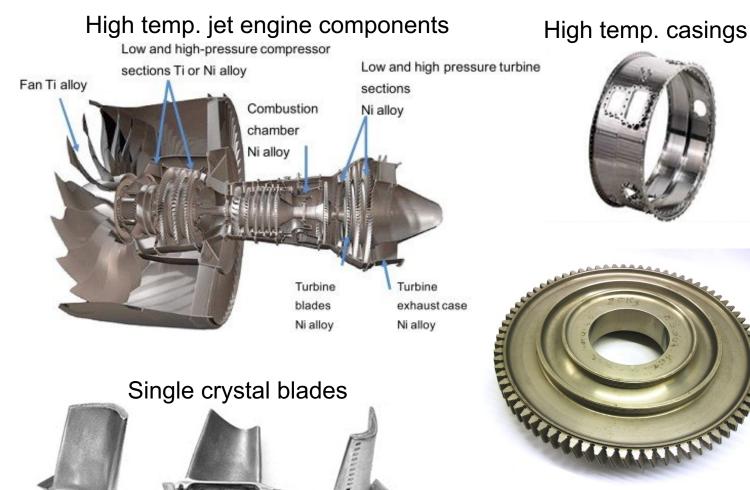
$$\dot{\gamma} - creep shear strain rate$$

$$\Omega - atomic volume$$

$$D_{T_m} - diffusivity at melting temperature$$


$$Q_v - activation energy$$

$$R - molar gas constant$$


- T_m melting temperature
- T-temperature
- How can we minimise the dimensionless creep shear strain rate?

strain rate

Why Ni-base Superalloys for HT?

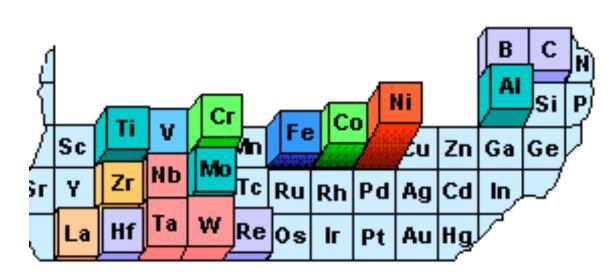
Applications of Ni-base Superalloys

Channels for air cooling

Turbine disk – Hot Isostatically Pressed component

ALTEN

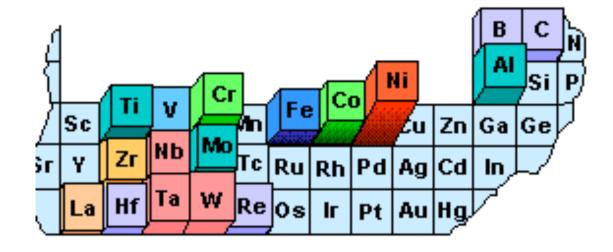
Land-based gas turbine


Oil and gas industry (corrosive environments)

Course goal: Define the term 'Superalloys' and describe the three main types currently being used. Focus on Ni-base superalloys, understand their complex chemistry, processing and in-service performance.

Learning outcomes:

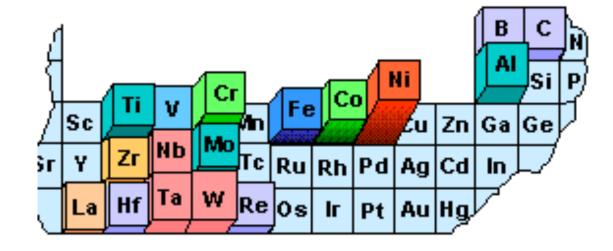
- Define the term 'Superalloys' and summarise the advantages and disadvantages of Fe, Ni, and Co base materials, as well as their different applications.
- Summarise the complexity of Ni superalloy chemistry, and how processing and heattreatments can be used to improve material properties. Explain some of the reasoning behind the different categories of Ni superalloys.
- Describe the degradation processes that affect the in-service properties of Ni superalloys (eg. corrosion, SCC, oxidation, hot-corrosion, etc.)


Ni superalloys are highly complex materials.

Superalloy Chemistry

Ni Superalloys;

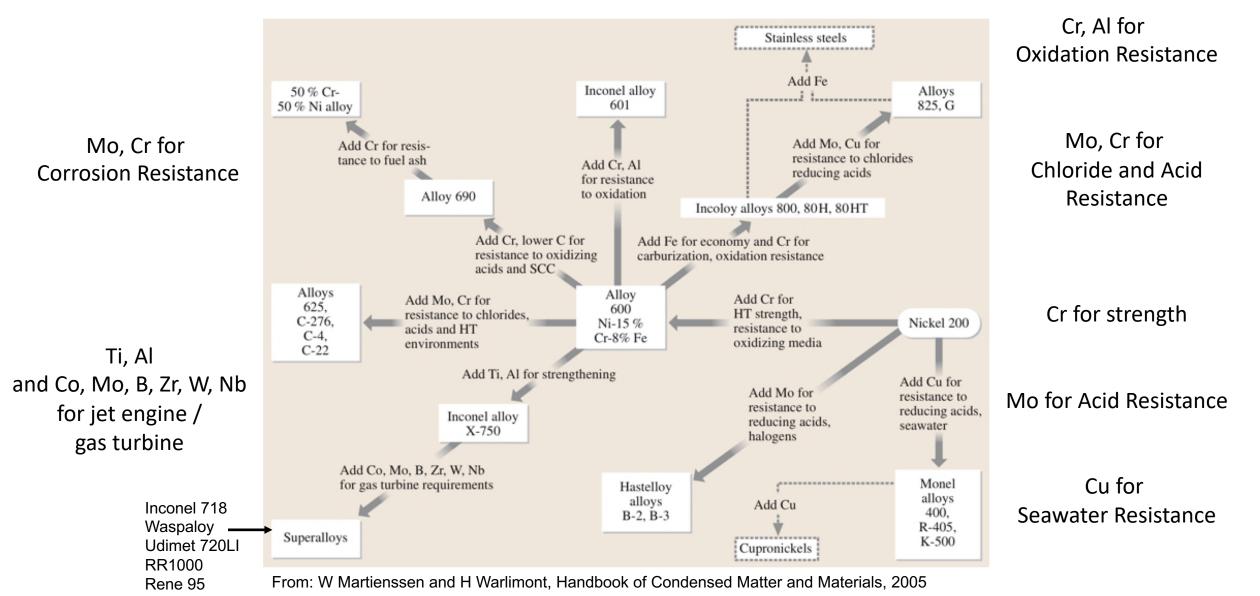
- Contain at least 50% Ni by weight.
- Many contain more than 10 types of alloying additions, including ...
 - Cr (10% 20%)
 - Co (10% 20%)
 - Al and Ti (up to 8% combined)
 - Small amounts of Mo, W, C
 - Additional elements...


Superalloy Chemistry

"Matrix" of Ni plus...

- **1.** Ni, Co, Fe, Cr, Ru, Mo, Re, W γ (FCC) stabilising, similar atomic radii
- **2.** Al, Ti, Nb, Ta γ' (FCC ordered) stabilising, larger atomic radii
- **3. B, C, Zr** γ grain boundary, TCP phase, segregators
- Cr, Mo, W, Nb, Ta can form *carbides* with C additions.
- Cr, Mo can form *borides* with B additions.

Superalloy Chemistry



"Matrix" of Ni plus...

- Co, Cr, Mo, W, etc. for Solid Solution Strengthening
- Al, Ti, Nb, Ta for Matrix Precipitation Strengthening
- **B, C** for Grain Boundary Precipitation Strengthening
- **Cr, Al** for Oxide Formation (Chromia or Alumina)

- **Cr** for Aqueous Corrosion/SCC Resistance
- La, Hf, B, Mg for Grain Boundary Ductility
- La for Oxide (and Coating) Adherence
- Re, Ru, Pt for Creep Stability

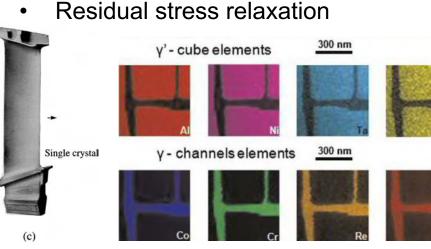
Superalloy Chemistry \rightarrow Tailor Properties

Property Development in Ni-base Superalloys

Chemistry

- Develop oxidation/corrosion resistance
- Provide elements for formation of precipitates
- Provide grain boundary strengtheners
- Enhance processability

Processing


- Conventional Castings (Polycrystalline)
- Forged Products
- Powder-Metallurgy + Forge ٠
- **Directional Casting Directional** Solidification and Single Crystal

Columnar crystal

structure

Heat Treatment

- Solution Treatment to homogenize chemistry, structure and properties
- Precipitation of matrix strengthening phases
- Precipitation of grain boundary strengthening carbides and boro-carbides
- (Coating treatment integrated with alloy heat treatment)

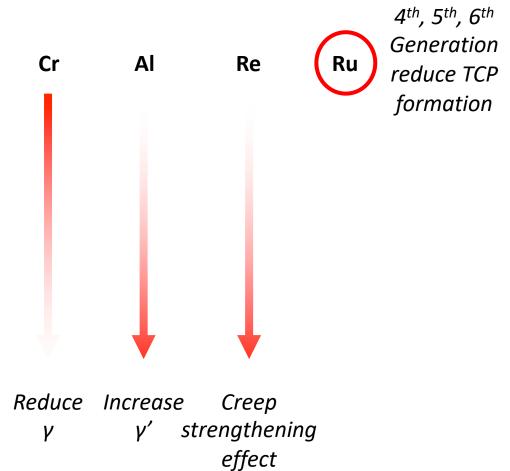
Types of Ni-base Superalloys (1)

Alloy Type	Alloying Element	Key Characteristic	Applications	Examples of Alloys
"Pure Nickel"	Minimal alloying	Magnetic properties	Electronics, Sensors	"Ni-200"
Solid Solution Strengthened	Cr, Fe, Co	Moderate strength to intermediate temperatures, stability of structure & properties	Ducting, diffusers casings	In 625,
Aqueous Corrosion and SCC resistant	Cr	Formation of spinels and chromia corrosion product	Chemical plants, steam systems, Nuclear plants	Alloy 600, alloy 690, (Alloy 800)
Oxidation and Hot Corrosion Resistant	Al (Ti), Cr	Formation of alumina or Chromia scales	Gas turbines, superchargers	In713, In100, Mar- M200, CM247, GTD 191, In738

*Alloys are not named or numbered according to a system.

Types of Ni-base Superalloys (2)

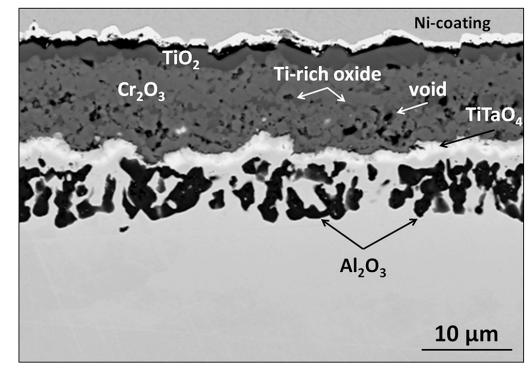
Alloy Type	Alloying Element	Key Characteristic	Applications	Examples of Alloys
Intermediate Temperature Stress Relaxation Resistant	Al, Ti, Cr, Nb	Formation of small amount of highly stable precipitates – generally lower γ' volume fraction		Alloy 750 Alloy 706, Alloy 617
Elevated Temperature Strength	Al, Ti, Cr, Nb	Forged Precipitation hardened alloys	Turbine disk alloys engine casings, exhausts etc.	Alloys 718, 706, 720
		Mainly conventionally cast (CC) (but can be forged superalloys), γ- γ' matrix structure, grain boundary "carbide" arrays. High Volume fraction γ' alloys	Hot gas path parts (Blades and Vanes)	In738LC, Mar-M 200, CM247,
Very High Temperature Creep and Fatigue Resistant	Al, Ti, Cr B (C), Hf	Directional solidification (DS) and single crystal (SC) processed, ultimate volume fraction γ'. Elimination or control of Grain Boundaries. (Specialized additions for low angle boundary control)	Hot gas path parts (Blades and Vanes)	PWA 1426, CMSX3 Rene-N5, CMSX-4, PWA1484, CMSX-10


Importont		Alloy		Cr	Co	Mo
Important		ATI 718Plus	wrought	19	9	2.8
-		Astroloy	PM	15	17	5.1
A arachaaa		CMSX2	SX	8	4.6	0.6
Aerospace		CMSX4	SX	5.7	11	0.4
		CMSX6	SX	9.8	5	3
Suparallava	\rightarrow	CMSX10	SX	2	3	0.4
Superalloys		FT750DC	wrought	20		
	\longrightarrow	Hastelloy X	wrought	22	1.5	9
		Hastelloy S	wrought	16		15
		Inconel 600	wrought	16		
	\longrightarrow	Inconel 718	wrought	19		3.1
	\rightarrow	Inconel 625	Deposited	22	0.1	9
PM = powder metallurgy		MA758	MA/ODS	30		
		MA760	MA/ODS	20		
SX = single crystal		MA6000	MA/ODS	15		
		MAR-M200	cast	9	10	
MA = mechanically alloyed		Nimonic 80A	wrought	20	1.1	
ODS = oxide dispersion strengthened		Nimonic 105	wrought	15	20	5
005 – Onide dispersion scienythened		PM1000	MA/ODS	20		
		Rene N5	SX	7	8	2
	\rightarrow	Rene N6	SX	4.2	13	1.4

*Alloys are not named or numbered according to a system.

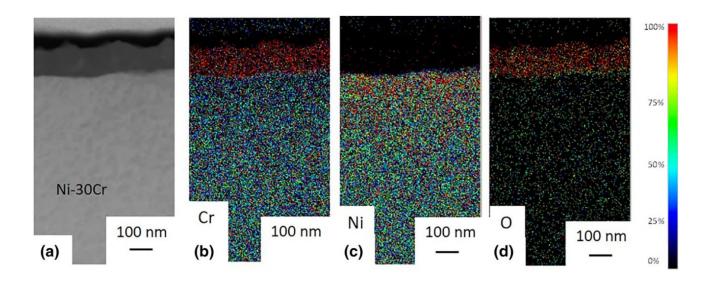
All	loy		Cr	Со	Мо	W	Та	Nb	Al	Ti	Fe	С	В	Zr	Re	Hf	Others
ATI	718Plus	wrought	19	9	2.8	1.1		5.6	1.5	0.8	9	0	0.01				
Astı	roloy	PM	15	17	5.1				4	3.5		0		0			
CM	SX2	SX	8	4.6	0.6	7.9	5.8		5.6	0.9							
CM	SX4	SX	5.7	11	0.4	5.2	5.6		5.2	0.7					3	0.1	
CM	SX6	SX	9.8	5	3		2.1		4.8	4.7							
CM:	SX10	SX	2	3	0.4	5	8	0.1	5.7	0.2					6	0	
FT7	'50DC	wrought	20			3.5			2.3	2.1	5	0.1	0.01				0.4 Si
Has	stelloy X	wrought	22	1.5	9	6					19	0.1					0.5Mn, 0.5S
	, stelloy S	wrought	16		15				0.2		1	0	0.01				0.02 La
Inco	onel 600	wrought	16								7.2	0					0.2Mn, 0.2 S
	onel 718	wrought	19		3.1			5	0.4	0.9	19	0					0.2Mn, 0.35
	onel 625	Deposited	22	0.1	9			3.5	0.1	0.2	3	0					
	758	MA/ODS	30			0.5			0.3			0.1					0.6 yttria
	760	MA/ODS	20			3.4			6		1.2	0.1					1.0 yttria
	6000	MA/ODS	15			3.9			4.5	2.3	1.5	0.1					1.1 yttria
	R-M200	cast	9	10		12		1	5	2		0.2	0.02	0.1			,
Nim	nonic 80A	wrought	20	1.1					1.3	2.5			0.06				
Nim	nonic 105	wrought	15	20	5					1.2	4.5		0.2				
PM	1000	MA/ODS	20						0.3	0.5	3						0.6 yttria
	ne N5	SX	7	8	2	5	7		6.2						3	0.2	
	ne N6	SX	4.2	13	1.4	6	7.2		5.8						5	0.2	
	ne 41	wrought	19	11	10				1.5	3.1		0.1	0.05				
	2000	SX	10	15	3				0.1	4							1 V
	3000	SX	2.3	3.3	0.4	5.5	8.4		5.8	0.2					6.3	0	
UCS	SX1	SX	2.3	6	1.5	7	8.4		5.8	0.2					6.3	0	2 Ru
UCS		SX	2.3	6	3	6	8.4		5.8	0.2					6.3	0	6Ru
SRR		SX	8.5	5		9.5	2.8		5.5	2.2							
	S 63	SX	6.9		7.5		8.4		5.8	0							
TMS		SX	3	12	2	6	6								5	0.1	
	S138	SX	3	12	3	6	6								5	0.1	2Ru
	S162	SX	2.9	5.8	3.9	5.8	5.6		5.8						4.9	0.1	6Ru
Udi	imet 500	wrought	18	19	4				2.9	2.9		0.1	0.01	0.1			
	imet 700	wrought	15	19	5.2				4.3	3.5		0.1	0.03				
	spaloy	wrought	20	14	4.3				1.3	3		0.1	0.01	0.1			

Important Single Crystal Superalloys


	Cr	Со	Мо	W	Та	V	Nb	Al	Ti	Hf	Re
1st Generation											
PWA1480	10	5	0	4	12			5	1.5	0	
Rene N4	9	8	2	6	4		0.5	3.7	4.2	0	
SRR99	8	5	0	10	3			5.5	2.2	0	
RR2000	10	15	3	0	0	1		5.5	4	0	
AM1	8	6	2	6	9			5.2	1.2	0	
AM3	8	6	2	5	4			6	2	0	
CMSX2	8	5	0.6	8	6			5.6	1	0	
CMSX3	8	5	0.6	8	6			5.6	1	0.1	
CMSX6	10	5	3	0	2			4.8	4.7	0.1	
AF56	12	8	2	4	5			3.4	4.2	0	
2nd Generation											
CMSX4	7	9	0.6	6	7			5.6	1	0.1	3
PWA1484	5	10	2	6	9			5.6	0	0.1	3
SC180	5	10	2	5	9			5.2	1	0.1	3
MC2	8	5	2	8	6			5	1.5	0	0
Rene N5	7	8	2	5	7			6.2	0	0.2	3
3rd Generation											
CMSX10	2	3	0.4	5	8			5.7	0.2	0.03	6
Rene N6	4.2	12.5	1.4	6	7.2		0.1	5.75	0	0.15	5.4
TMS75	3	12	2	6	6			6	0	0.1	5
TMS113	2.89	11.9	1.99	5.96	5.96			6.56	0	0.1	5.96

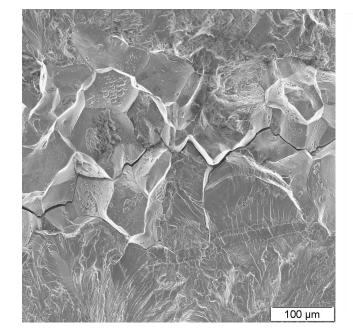
Course goal: Define the term 'Superalloys' and describe the three main types currently being used. Focus on Ni-base superalloys, understand their complex chemistry, processing and in-service performance.

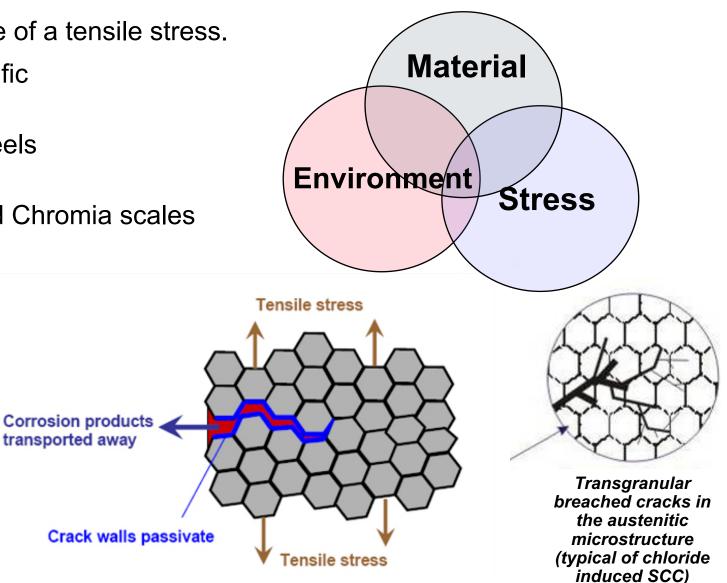
Learning outcomes:


- Define the term 'Superalloys' and summarise the advantages and disadvantages of Fe, Ni, and Co base materials, as well as their different applications.
- Summarise the complexity of Ni superalloy chemistry, and how processing and heattreatments can be used to improve material properties. Explain some of the reasoning behind the different categories of Ni superalloys.
- Describe the degradation processes that affect the in-service properties of Ni superalloys (eg. corrosion, SCC, oxidation, hot-corrosion, etc.)

Chromia oxide formation in a Ni superalloy.

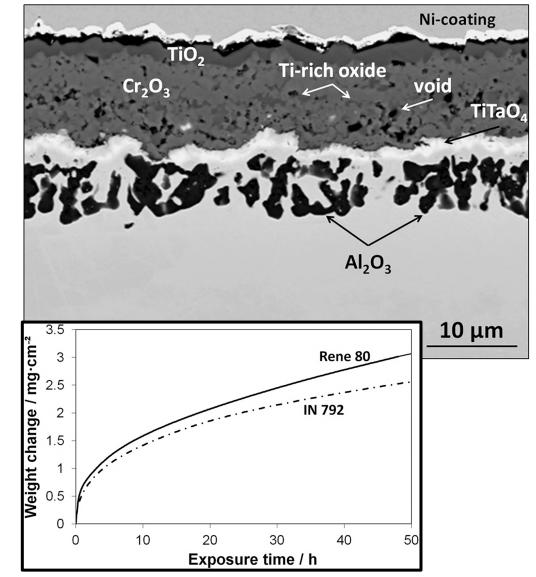
Ni-base Superalloys – Aqueous Corrosion


- Superior resistance to Stainless Steels.
- Formation of Chromia scale.
- Alloy Ni with $Cr \rightarrow \text{NiFeCr Spinel} \rightarrow \text{Chromia scale}$
- May call for other elements to provide strength, etc.
 → change overall composition
- Potentially use as a clad (via arc deposit) or as a "wallpaper"



Galvanic series in sea water	Electromotive series [†]								
Anodic (corroded) end									
Magnesium	Li,	Li ⁺	-3.02 volts						
Magnesium alloys	Κ,	K +	-2. 9 2						
Zinc	Na,	Na ⁺	-2.71						
Galvanized steel	Mg,	Mg ⁺⁺	-2.34						
Aluminum	Al,	Al ⁺⁺⁺	-1.67						
Cadmium	Zn,	Zn ⁺⁺	-0.76						
Aluminum alloys	Cr,	Cr ⁺⁺	-0.71						
Steel	Fe,	Fe ⁺⁺	-0.44						
Wrought iron	Cd,	Cd^{++}	-0.40						
Cast iron	Co,	Co ⁺⁺	-0.28						
50-50 Solder	Ni,	Ni ⁺⁺	-0.25						
18-8 Stainless steel (active)	Sn,	Sn ⁺⁺	-0.14						
Lead	Pb,	Pb ⁺⁺	-0.13						
Tin	H ₂ ,	H ⁺	0.00 (Reference						
Muntz metal	Bi,	Bi ⁺⁺⁺	0.23						
Nickel	Cu,	Cu ⁺⁺	0.34						
Yellow brass	Hg,	Hg ^{+ +}	0.80						
Red brass		Ag^+	0.80						
Copper	Pt,		1.2						
70-30 Cupronickel	Au,	Au ⁺	1.7						
18-8 Stainless steel (passive)									

Stress Corrosion Cracking (SCC)


- SCC = (Delayed) cracking in the presence of a tensile stress.
- Generally along grain boundaries or specific crystallographic planes
- Ni alloys selected to replace Stainless Steels for better resistance
- Rely on forming adherent Ni/Cr spinel and Chromia scales – even in tight cracks!

Ni-base Superalloys – Oxidation

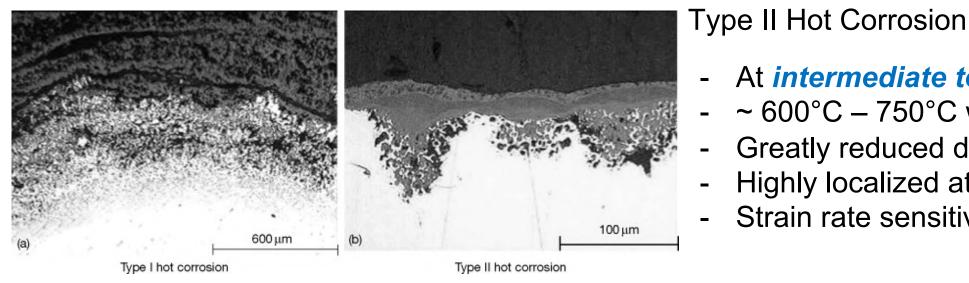
- 1. Formation of *Alumina or Chromia* scales.
- 2. Compact, crack-free, tightly adherent scales
- 3. Growth by ionic diffusion (O^{2-} in, or M^{n+} out)
- 4. Develops parabolic kinetics with no breakaway.
- *Alumina* is a better choice for oxidation protection.
- Which (Alumina or Chromia) scale develops depends on chemical activity of the cation species – depends on local chemistry, incl. other elements, and O activity.
- Ti is an aggressive oxide former but it can have a deleterious effect on the alumina scale.
- Chromia starts to evaporate at temperatures above about 1025°C !

Ni-base Superalloys – Hot Corrosion

- "Hot Corrosion" = Chemically Accelerated oxidation attack
- Accelerated by presence of S, Na and CI
- Formation of "sticky sulphates" with e.g W, Mo from alloy
- Problem is Alumina Stability
- \rightarrow Utilise Chromia forming alloy

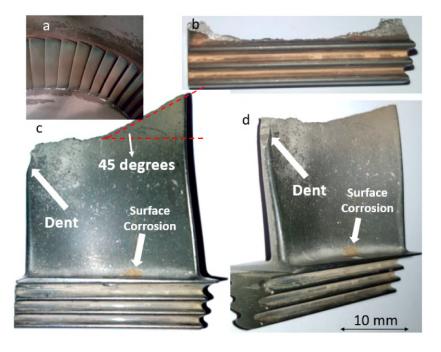
- at high temperatures
- ~ 750°C 900°C window
- Macroscopic attack
- Due to Sulphate (acidic) fluxing of -Alumina (amphoteric) oxide

At *intermediate temperatures*

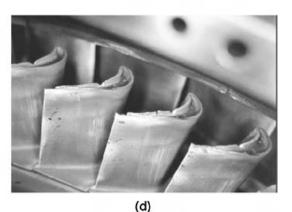

Strain rate sensitivity observed

Highly localized at grain boundaries

~ 600°C – 750°C window


Greatly reduced ductility

25


Turbofan Engine Failure

- Thermal cycling and high thermal gradients \rightarrow thermal fatigue.
- Oxidation and corrosion → tip cracks, develop into v-shaped notches
- Re-welding of blades needed, but this can cause preferential attack and failure.

