10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

An Interactive, Virtual Wind Tunnel using Virtual Reality and Unreal
Engine 4

Adrian R. G. Harwood*, Alistair J. Revell

School of Mechanical, Aerospace and Civil Engineering, The University of Manchester,
Sackuille Street, M1 3BB, United Kingdom

20th May 2019

Abstract

This article presents an integrated, interactive modelling and simulation tool for aerodynamic design
and analysis. The development and coupling of a GPU-accelerated Computational Fluid Dynamics
(CFD) library, a 3D scanning library and a virtual-reality-powered video game are presented and the re-
sulting virtual wind tunnel described. Users of the tunnel may interact with both geometry and solver
from within the virtual environment providing a truly unique tool for performing high-level aerody-
namic analysis around imported and scanned objects. Here we introduce the relevant technologies and
approaches used to build the components and discuss the technical challenges of integrating them. The
flow solver is validated against experimental data for a representative turbulent flow and demonstrates
excellent agreement with available data. We also present the peak performance of the solver on cur-
rent hardware. Limitations and potential expansions for this proof of concept are discussed as well as
applications in a range of other scientific fields.

Keywords: Virtual Reality, Interactive Physics, Lattice-Boltzmann Method, CUDA, Unreal Engine 4

1. Introduction

Modelling and simulation is an essential part of engineering. Physical testing of designs can require
significant effort and expense; test components must be manufactured and suitable test facilities con-
structed, acquired or hired. Furthermore, based on the results of testing, designs and test procedures
may need to be reworked incurring further costs in terms of both time and money. Modelling and sim-
ulation avoids this expense by allowing engineers to conduct a wide range of tests virtually. As designs
can remain entirely digital, this activity generally occurs early in the design process. Upstream modifi-
cations of a design are almost always cheaper to implement compared with a downstream counterpart.

Modelling and simulation in engineering is a complex and sometimes costly process, with simula-
tions taking time and resources to configure, run and post-process. Typical use cases of modelling and
simulation in engineering require highly accurate modelling of potentially complex phenomena and
thus, simulation run times can be of the order of days or weeks [1]. However, in the case of early-stage
design, there is a recognised need to run a large number of fast simulations with reduced accuracy to
allow early-stage development or communication of concepts and principles. Therefore, it is necessary
for researchers to develop modelling and simulation approaches which can be used legitimately to pro-
vide lower accuracy estimates in a very short amount of time. This relaxation of requirements allows
reduced-order modelling and increased approximation, creating opportunities for simulations to be run
at ‘interactive speeds’. In such simulations, results are simulated and visualised instantly, allowing users
to also interact with, and reconfigure, their simulations at run time.

Computational Fluid Dynamics (CFD) is a modelling and simulation discipline which simulates the
behaviour of fluids with the fluid represented by a grid of control volumes (cells) or a collection of
particles. In recent decades, CFD simulations based on the Boltzmann equation have been increased
in popularity and are capable of representing macroscopic hydrodynamics correctly [2]. The princi-
pal advantage of these formulations over more traditional CFD methods which solve the macroscopic
Navier-Stokes Equations is the ability to accelerate the calculation on mass-parallel hardware such as

*Corresponding author
Email address: adrian.harwood@manchester.ac.uk (Adrian R. G. Harwood)

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

7

Digital Objects & Virtual Wind Tunnel 2 Viewer
T

mm

Physical Objects

User

Figure 1: The virtual wind tunnel concept integrating three key areas of technology to realise a working prototype.

Graphics Processing Units (GPUs). This is enabled principally by to the spatial locality of the numeri-
cal schemes involved. In many cases, the computational throughput of such simulations is so high that
predictions take place at speeds approaching real-time [3, 4], thus facilitating interactive applications.

An application which combines an interactive flow solver with an in-situ visualisation and user in-
terface is termed a “virtual wind tunnel” and is a tool often identified as part of the virtual engineering
paradigm [5]. Virtual wind tunnels represent a shift in applied CFD methodologies and offer the poten-
tial to transform the way CFD is used within the industry. However, in order for them to be considered
more than simply ‘toys’, work must be done to integrate useful physical modelling of a suitable degree
of accuracy. In this paper, we present our implementation of a virtual wind tunnel incorporating a state
of the art GPU-accelerated flow solver, virtual reality (VR) interaction and a 3D object capture facility
and mesh processor. These capabilities are integrated to allow flow round physical or digital objects to
be simulated, viewed and interactively investigated by a user. Figure 1 illustrates the concept realised
by the implementation.

1.1. Previous Virtual Wind Tunnels

The concept of a virtual wind tunnel is not new, with the 20th century work of Bryson and Levitt
[6] and the patent of Strumolo and Babu [7] recognising the potential for interactive investigation tools
in engineering design. However, in general, older incarnations of the virtual wind tunnel concept were
built for the inspection of pre-computed data. More recently, the potential for a real-time, interactive
CFD simulation is starting to be realised. The work of Bormann ef al. [8], Wenisch et al. [9], Linxweiler
et al. [10], Delbosc [11], Glessmer and Janfen [12] as well as Harwood and Revell [13-15] introduce
different realisations of interactive CFD solutions for the run-time steering and simulation modification.

However, interaction and visualisation elements of these realisations have been, thus far, limited to
desk-based interfaces with ‘flat” interaction through widgets, touch gestures or mouse pointers. Their
user interfaces deliver scientific presentations of information Fig. 2 which, although very capable, do not
present a truly immersive or intuitive simulation environment for the broader user base. Conversely,
the present work includes VR and incorporates its inherent ability for head and controller tracking to
provide a more immersive experience for a user.

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

17D g b P00/ FER sk aae

Figeline Broveser

¥ viskie shom widger
Color By

[y agrme =)
[Cotrpanent 1]

Rescaie Range
7] Use Global Range
7] Automaticaby Recisle
Anootation

Show Legend

Show Cube Axes

Raprassntsnon
Frontfacs
[Surfce -
Badbioce:

FollowFrontiscs -

Criertation

[t heamal

Figure 2: Scientific interface of the VirtualFluids interactive CFD application [10].

1.2. Virtual Reality, Virtual Environments and Game Engines

A virtual wind tunnel is, at least in part, an enhanced virtual environment, the technology for which
has been steadily advancing. The application of 3D virtual environments in scientific fields was origi-
nally motivated by the need to collaboratively visualise spatially 3D data [16, 17]. Such environments
are an effective means of communicating this type of information due to the added dimensionality per-
ceived by humans with binocular vision [17]. Such visualisation environments are termed ‘CAVEs” and
have been used to communicate complex 3D architectural, medical, manufacturing and geographical
data [18]. Virtual environments can be built digitally, acquired from CAD tools or scanned using depth-
sensing cameras and displayed along with simulation results or other datasets.

CAVE-type solutions are usually projector-based, and hence are expensive to purchase and require
a large amount of space to set up and use. More recently, virtual environments have made use of head-
mounted displays (HMD) such as the HTC Vive and Oculus Rift headsets, a more affordable, compact
solution. Manipulation of 3D environments can also be performed using associated controllers. The
availability of software development kits (SDKs) like OpenVR [19] allow developers to easily harness
the power of VR kits for a more immersive visualisation and navigation experience [20-23].

3D video games rely heavily on the construction of a realistic virtual environment to present a con-
vincing interpretation of reality to a player. More recent video games support the integration of HMDs
and VR hardware as the principal means of user interaction and researchers in a wide range of fields
have been quick to exploit this potential for analysis and testing [24-29], disaster and evacuation simu-
lation [25, 30], the simulation of physical impairment [31], computer vision [32, 33] and applications in
education and training [34-37].

Video games are built and run using a collection of tools known as a game engine. Game engine pack-
ages include authoring tools for the creation of 3D worlds (a 3D editor application), the automation of
game logic within a world (a scripting interface) and a comprehensive set of APIs for the management
of interaction between world components (called actors). Game engines include powerful rendering ca-
pabilities responsible for scene transformation, shading and lighting and typically incorporate a physics
engine which provides localised physical modelling. Figure 3 shows the typical components of a game
engine package and also illustrates the plethora of managed capabilities. Programmers may also extend
these capabilities through the definition of their own actor classes. Game engines, thus, provide a capa-
ble platform on which 3D interactive simulation tools may be built. However, many of the more mature
game engines are often proprietary such as Frostbite [38], CryEngine3 [39] and Source [40] and must
be licensed for commercial use. Unity3D [41] and Unreal Engine 4 [42] however, are relatively mature

85

86

87

88

89

20

91

92

93

94

95

926

97

29

101

102

Visual - Foundations
Effe cts Animation (e.g. Scripting,

World Management)
Human
Low-Level .
Physics Interface
Renderer i
Devices

Figure 3: Illustration of a generic game engine with its key constituents.

engines that are free for educational or academic use.

1.3. Real-Time Game Engine Physics

If we propose using a game engine for visualisation and interaction purposes, it raises the question as
to whether we should consider using the physics simulation capabilities available within those engines
to simulate the fluid. The simulation of fluids and flexible structures in real-time is indeed offered by
some game engines or by game-engine-compatible third party libraries such as Havok [43] or PhysX
[44]. Existing models developed for these libraries started within the computer graphics community and
offer impressive levels of performance. However, not all simulation in computer graphics, is physically-
based; a simulation which looks convincing can be achieved without the need for a physically-based
model. In some cases, where exaggerated behaviour is required (such as for explosions in games and
films), physically-based simulation would produce an uninspiring result.

Physically-based models for fluid simulation in games and animation attempt to solve the Navier-
Stokes equations on either a grid (Eulerian representation) or a set of moving particles (Lagrangian
representation). In order to achieve real-time evolution, these solvers are typically implemented to run
on commodity graphics hardware. Examples of Navier-Stokes solvers used for fluid simulation in games
include Stable Fluids [45], FLIP [46], APEX [47] and Smoothed-Particle Hydrodynamics [48]. However,
the purpose of a game physics simulation is not to provide a high-fidelity result but to provide visual
plausibility. Therefore, it is often the case that simplifications are made to the equations through mod-
elling or stringent domain size restrictions in order to maintain speed or stability, for example:

104

106

107

128

Removal of non-linear terms in the equations.

Restriction on the degrees of freedom.

Use of low-order, local and/or explicit solvers with large time steps.
e Use of low-tolerance iterative solution processes.

e Approximation of fluid viscosity through numerical error.

The Flex simulation framework [49, 50], achieves very convincing, fast and stable results but does
not solve Navier-Stokes at all. Instead it replaces the full governing equations by a set of particle-particle
positional constraints representing physical heuristics. These constraints, although physically-based,
collectively do not represent the full physics of the problem being simulated. However, the resulting
numerics reduce to a linear system which can be solved rapidly with particle dynamics producing visu-
ally convincing and stable behaviour.

In summary, game physics solvers produce simulations that are fast, robust and integrate well with
rendering pipelines. However, they often lack physical details due to numerical errors and artefacts pro-
duced by aggressive over-approximation. Despite their impressive speed and stability, their inflexibility
and over-simplification means they lack the control over accuracy required for the standard of simu-
lation demanded by engineers. Thus, in this work we opt to replace the flow physics engine shipped
with our choice of game engine with our own physically-based LBM simulation which offers a suitable
balance between accuracy and speed acceptable to engineers.

In the remainder of this article, we discuss our developments in the three key areas of technology
necessary for realising the virtual wind tunnel: the solver, the object scanner and the game (c.f. Fig. 1).
The flow solver is validated for a 3D turbulent channel flow in Section 2.2. We then conclude with some
limitations of the current prototype in Section 6.1 and summarise in Section 7 with some remarks on
the limitations as well as future trends for the underlying technology. We also identify a number of
opportunities in other disciplines for which this technology could be adapted.

2. Solver Development

The flow solver component of Fig. 1 is a GPU-accelerated implementation of the Lattice-Boltzmann
Method (LBM) [2]. Unlike traditional CFD methods which solve some form of the Navier-Stokes equa-
tions, the LBM represents fluid dynamics in terms of a discrete Boltzmann transport equation. Rather
than the transport quantity being a macroscopic variable such as density or momentum, or a micro-
scopic property such as the velocity of a fluid particle, the Boltzmann equation models the transport of
a set of mesoscopic particle distribution functions f. A single value of f represents probability of finding
a particle with a particular velocity ¢ at a given location in space and time. The redistribution of these
probabilities in time is enforced through a collision model €. The general Boltzmann equation is given
in Eq. (1a).

A discrete, computational domain on which to solve this equation is represented as a uniform Carte-
sian grid of cells, with nodal locations at cell centres, inter-connected by a finite set of lattice links. The
set of links {7} dictates admissible directions along which individual f; quantities may be convected. A
set of vectors {¢;} are associated with the set of lattice links.

After discretisation, the Boltzmann equation may be expressed as in Eq. (1b). The left-hand side of
Eq. (1b) represents the convection of f; along lattice link i to an adjacent node — termed the streaming
step. The values to be convected are computed by performing a collision operation 2 on the current set
of f values at a given node as per the right-hand side of the equation. The collision operation is carried
out by relaxing the current distribution functions towards a local equilibrium distribution f°¢ which is
a second-order expansion in the macroscopic velocity of the Maxwell-Boltzmann distribution [51]. This
part of the evaluation is termed the collision step. An illustration of an LBM time step is given in Fig. 4.

o
(atJroV)fQ (1a)
[i(Z,t) — fi(Z+ &AL+ At) = Q(fi, [{7) (1b)

Macroscopic quantities are related to the mesoscopic distribution functions through their first two
moments whose discrete forms are given in Eq. (2).

Cell Node Lattice Link

Collide ; Stream
S N b T e

Update Macroscopic & Equilibrium

Figure 4: Illustration of the LBM with discrete cells shown as shaded blocks, lattice links as dashed lines the distribution functions
f as coloured arrows. Populations before collision are red, populations after are blue.

p= Z fi (2a)
pU; = Z Ci,jfi (Zb)

The LBM recovers the quasi-incompressible Navier-Stokes equations at the macroscale so long as
the lattice Mach number remains small. This is due to the fact that the equilibrium function used in the
collision process is developed through a local, second order expansion in the velocity. Its application is,
therefore, limited to incompressible flow at present with compressible extensions of the method an area
of active research [52].

2.1. Implementation on the GPU

The main appeal of LBM for CFD researchers is the spatial locality and simplicity of Eq. (1b). This
allows the method to be parallelised on graphics hardware and executed much more rapidly than tradi-
tional CFD methods which often require highly non-local interpolation and differencing stencils. This
work uses LBM due to its ability to provide accurate modelling for the engineering community while
offering the potential for acceleration up to real-time speeds for interactive applications.

The suitability of LBM for general purpose GPU (GPGPU) computing has seen numerous, highly-
efficient implementations of LBM on GPU in recent years [4, 53-58]. Although initially developed using
graphics APIs [59], higher-level APIs for GPGPU computing (such as CUDA from NVIDIA [60]) have,
more recently, made this pursuit even more accessible to researchers from a range of disciplines.

In order to maximise the performance of the LBM algorithm on a GPU, the limitations of GPU hard-
ware need to be understood. The single-instruction-multiple-thread (SIMT) execution model used by
GPUs is most efficient when all threads (i.e. lattice nodes, assuming one-to-one matching between
threads and nodes) perform the same set of instructions. Hence, branch divergence should be avoided.
Furthermore, the LBM requires each thread to read and write each population to and from GPU main
memory. This is a costly operation and hence the algorithm should be implemented to minimise global
memory operations and use as much on-chip, cache memory as possible. These, along with other es-
tablished guidelines for performance are summarised neatly in [11].

The performance of an LBM algorithm can be measured in terms of the number of lattice nodes which
can be updated (complete stream and collide) in a physical second of wall clock time. This measure is
given the units Million Lattice Updates Per Second (MLUPS) and is computed by using wall clock timers
in the code as

N xT

MLUPS = (3)
where N is the total number of lattice nodes and ¢,, is the wall clock time for executing T time steps. The
LBM on GPU is memory-bound [56] and hence throughput, as measured in MLUPS, will only increase
up to a point at which the memory bandwidth of the device becomes saturated and execution begins

w

Authors Year GPU MLUPS

Tolke et al. [53] 2008 8800 Ultra 200-600
Mawson [3] 2013 Tesla K20 700-1000
Mawson [3] 2013 Quadro K5000m 300-400
Delbosc [11] 2016 Tesla K40 1480
Delbosc [11] 2016 GTX 780Ti 1785
Glessmer & Janflen [12] 2017 Quadro M6000 450-700
Tran et al. [58] 2017 Tesla K20 1000-1200
Present Work 2018 GTX 1080Ti 1000-1700

Table 1: Single-precision performance of recent 3D GPU-accelerated LBM implementations. Range of performance due to different
modelling and launch parameter configurations.

y+=no-slip b.c.

x+ = periodic b.c.

z+ = periodic b.c.

3.4H

z- = periodic b.c.

x- = periodic b.c.
y- =no-slip b.c.

Origin (0,0,0)

Figure 5: Case configuration for 3D turbulent channel flow with array of wall-mounted cubes.

to queue while memory transactions are carried out. The typical performance of a 3D, single-precision
LBM implementation on a single GPU are tabulated in Table 1 from the literature. Peak performance
can be anything up to 1800 MLUPS depending on the device and model complexity used. We include
our own performance results to Table 1 for comparison and find them to be in line with the state of the
art with improved performance over existing implementations largely due to use of the next generation
of GPU hardware.

To maximise performance, the LBM configuration used in this work is deliberately basic. The BGK
collision operator [61] is used, which is the least expensive from a computational perspective. Rigid
wall boundaries, are implemented as simple bounce-back boundary conditions [62], which are second-
order accurate in the cell size. A Smagorinsky turbulence model [63] is also implemented to provide
additional stability and flow through the domain may be introduced using either the forcing scheme
of Guo [64] or a forced-equilibrium inlet/outlet boundary. In the latter, the values of f are set equal
to f(p, i) where p and u are desired free-stream conditions. These configurations give a stable and
efficient flow simulation with a good degree of accuracy.

2.2. Validation and Performance

In order to validate the solver, we simulate a 3D turbulent channel containing an array of rigid, wall-
mounted cubes. This case is representative of an external flow around an object in a wind tunnel. Ex-
perimental data is available from Meinders and Hanjali¢ [65] and Hellsten et al. [66] for the purposes
of comparison. The simulation domain is shown in Fig. 5.

202

The number of lattice sites based on the reference length H = 50 This resolution gives a total number
of cells of approximately 6.8M. Body forcing is used to accelerate the flow from rest which is iteratively
adjusted to ensure the volume flow rate computed over the inlet face matches that of the reference case.
When the mass flow rate through the domain is tuned to within < 1% of the target value, the simulation
is run for 200 domain flows while velocity components and their 3D first order products are cumulatively
averaged in time. The Smagorinsky model available in the solver is enable to account for the coarse
resolution used. Table 2 documents the parameters used for the simulation. The simulation is executed
on eight NVIDIA GTX 1080Ti GPUs.

Parameter Value
Cube Height H 0.015m
Reference Velocity U, 3.86m/s
Reference Time ¢, s 0.00389s
Dimensionless Force 0.006229
Smag. Constant c; 0.3
Lattice Spacing dx 0.02
Dimensionless Timestep d¢ 0.0011
Reynolds Number 3831
Lattice Viscosity v 0.000718
Relaxation Time 7 0.502153

Table 2: Values used to simulate the 3D turbulent wall-mounted cube case of [65].

The peak performance of the solver on a single GPU has been presented against other implementa-
tions in Table 1. However, based on the observations of Harwood and Revell [14], it is essential to be able
to extend the calculation over multiple GPUs to maintain the required evolution rate of the simulation
as resolution increases. The domain is decomposed in 1D in the Z-direction. A halo region is used to
pass data between devices and is chosen to be 16 cells thick based on the recommendation of [67].

2.2.1. Results

The stream-wise and span-wise velocity profiles are plotted in a selection of vertical and horizontal
locations. All values of velocity are normalised with respect to the bulk velocity U,, computed by inte-
grating the time-averaged stream-wise velocity U, over the inlet face of the domain and dividing by the
area. Vertical slices are shown in Fig. 6 and horizontal slices in Fig. 7.
The simulation results show excellent agreement with the experimental results despite not using any
wall modelling and only a modest resolution.

s s s s s 5 5
8 s s . . s s
2 25 2 2 2 2 2
2 2 2 21 O 2 2 2
3 B 5 20 i B B B
s s s s s s s
1 1 1 1 1(7;773 1 1
(o
o8 os os 0s os os os
So
1 o 1 g 2 1 o0 1 2 1 2 KT 004 006 0 005 01 015 (S 005 01 0 005 01
U./T; T[T i T./0 iRl U.U./0 UG U.0./0
(a) Averaged U, velocity at different stream-wise locations (b) Averaged U.LU,, stress component at different stream-
compared with the experimental results. wise locations compared with the experimental results.
o ey mews L amens L wmeur L amem
) R T R
2 25 2 25 25
2 8 2 8 2
:15 >15) 15 >15) 15
0,
1 & 1 1 5 o0 1 1 So,
os o8 os o5 o5
00
oo ow oo ‘o om o: ‘o o o o om o1 o os o1
T TG i T T

(c) Averaged ULU. stress component at different stream-
wise locations compared with the experimental results.

Figure 6: Simulated velocity profiles and Reynolds stresses (solid line) along vertical lines compared with experimental data of
[65] and [66] (circles).

o/ =03 2/H=03 2/H =13 ©/H =17

z/H =23

2 2 2 2 2
18] 18 18 18] 18]
16| 16 16 16| 15|
14] 14 14 14] 14
12| 12 12 12| 12

= - - 0 = =

= ESEY EEEY 0= 1 T

3 S B

o
o3| 08 08 o o8 03|
o
(]
05| 06 06 o 05| 05|
04 04 04 04 04
02| 02 02 02| 02
o o 1 05 0 05 1 05 0 05 1 05 0 05 05

(a) Averaged U, velocity at different stream-wise locations

compared with the experimental results.

2 =03 /H=03 /=17 2/ =23
2 2 2 2 2
o
18 18 18 18 18 o
o
16 16 16 16 16
o
14] 14 14 14 14 o
o
12 12 12 12 12
o
= 2 Y = 1 o
o Q
o o}
08) 08| 08 08| 08 o
o] 9
o Q
06 <] 05| 06 05| 06 o
o] — -]
o Q
04] o 04, 04 04 04 Q
9 o
o c
02 o 02 02 02 02 <]
o o
° o

0 00 004 006 ©0 005 01 015 0 002 004 006 O 002 004 006

OO0 it iainti il

(c) Averaged ULU. stress component at different stream-

0 002 004 006

ezl

wise locations compared with the experimental results.

©/H =03

o
0000004

02 o
o

o/H =03
2

©/H =13,

04 o

o
02 o

i =03 ol =03 ofH =13 H =17 ofH =23

25 2 2 2 2
18] 18] 18 18
2 16| 15| 16 16
14 14 14 14
15 12 o 12 12 12
= = = = =
1 08 08 08 08
05 05 06 06

of

<}

0s S 04 o 0 ol

S I} o

S o o

000 02 02 02 02 B\

01 0_ 01 02 005 0 005 01 01 ©0_ 01 02 02 01 0 01 02 -01 0 Ol
U0, v/t el U0, v/t

(b) Averaged U velocity at different stream-wise locations

compared with the experimental results.

#/H =03 o/H=03

o =17 o =23
25 2 2 2 2
18 18 18 18
2 16 16 16 16
14 14 14 14
15 12 12 12 12
= E = 5, =
1 08 08 08 08
06 06 06 06
5
PR os " 04 ab o
%o)
°
9 02 02 02 02 o
2
8 3
0 00z o0r 006 0 o0l 002 003 0 o0l 00z 003 0 002 003 oo 0 006 01
T (s T [Ead v

(d) Averaged U.U. stress component at different stream-
wise locations compared with the experimental results.

=17 it =23
2 2
18 15
16 16
1 1
w2 1
5, 5,
08 0s
o
06 06 o
o
04 04 O
o
02 020
o
o

004 002 0 002
ey

002 001 0
U0

001

002 001 0
U

001

004 002 0 002 004 002 0 002
ey ey

(e) Averaged ULU. stress component at different horiz
stream-wise compared with the experimental results.

Figure 7: Simulated velocity profiles and Reynolds stresses (solid line) along horizontal lines (half channel width as symmetric)

compared with experimental data of [65] and [66] (circles)

10

222

232

3. Object Capture

In order to simulate the air flow around a wide variety of objects, our object capture software is
able to construct compatible representations for objects supplied digitally or physically. The former is
usual in engineering where products or components are routinely built digitally. However, the latter
capability enables the simulation of flow around objects for which a digital counterpart does not exist.
Examples could be clay-sculpted design prototypes in the automotive industry or pupil-built models in
a classroom environment.

The aim of the object capture library component of the virtual wind tunnel is to capture surface
information and to translate this information into two necessary representations:

o A suitable set of boundary conditions for the solver

e A suitable visual mesh for the game

Justification for these two representations is detailed in Section 5.2 as it relates to the integration
strategy employed. Surface information is readily available from CAD software in the form of an STL file
export. However, capturing reliable surface data for physical 3D objects is challenging. Depth-sensing
camera technology is a potential solution, with the Kinect camera by Microsoft shown to be a capable,
low-cost sensor [68-72]. A free software development kit (SDK) is provided to enable interfacing with
the hardware. It is a popular choice for indoor robotics, object recognition and 3D scene reconstruction
[73].

The Kinect camera uses triangulation of a structured light pattern reflected from the surface of a
physical object to capture surface data. The field of view of the Kinect 2 camera is able to capture the
3D position of 512 x 424 = 217,088 points [74]. In order to obtain a complete picture of the object, we
use an aluminium frame to position six Kinect cameras around a transparent table on which physical
objects may be placed.This laboratory set up is shown in Fig. 8a. The transparent table allows both the
capture of the bottom surface of objects and for objects to appear in the centre of the capture space.

Once capture has taken place, the point clouds from each camera are registered using the Point Cloud
Library (PCL) [75]. As position and orientation of the cameras is fixed, the cloud may be automatically
clipped to the capture space and the cloud aligned to the floor using calls to the PCL API. In order to
enable floor alignment, the relative translation and orientation of one of the cameras (used as a reference
camera) must be known in advance. Its point cloud is then the first to be transformed so it aligns with
the desired global reference frame (level with the table-top and facing the ‘forward” direction). This
orientation is determined when setting up the lab by performing a calibration test; a cube is scanned
and then an approximate transform applied to the global reference frame. This transformation is then
successively refined until the point cloud faces are determined to be oriented correctly with the global
reference frame. The approximate transformation is necessary to ensure convergence o the desired ori-
entation. The transform is then stored and used to calibrate the registration process.

Data obtained from Kinect, like all optical depth-sensors, can be noisy, particularly when structure
light falls on sharp edges or interfaces between materials of contrasting reflectivity. Automatic noise
removal filters, such as a Radial Outlier Removal (ROR) filter, can be applied although tuning the al-
gorithms involved for consistent performance is difficult. Alternatively, manual intervention can be em-
ployed to clean up the registered point cloud. The final step implemented by the object capture library
is to employ the ball pivoting algorithm [76] to triangulate the point cloud to form a surface mesh which
may be exported as an STL file. The complete processing pipeline is depicted in Fig. 8b.

11

264

[Get Frame (U,V,D)]_

[Map (U,V.D) > (X,Y,Z)*—
[Camera Space Clip Box]‘:

[Noise Filter (ROR)]‘:

[Normal Estimation]‘:

| Transform to World J=—
| Registration (ICP) |<—
| AxisAlignment Je—
| Triangulaton |<—

[Export Dual Mesh]<—

(a) Photograph of the laboratory set up for scanning 3D physical objects. (b) Breakdown of the steps involved
when processing the data acquired from
the Kinect cameras. All steps can be
achieved through the PCL and Kinect
APIs.

Figure 8: A photograph of the scanning laboratory and a summary of the processing pipeline used to transform the data from the
cameras into point cloud and surface mesh assets.

4. Game Development

Unreal Engine 4.16 (UE4) is chosen as the game engine on which to base the application. This engine
is considered most suitable due to its maturity and wide range of capabilities. As the intended appli-
cation for the game is to simulate a wind tunnel, a suitable map (UMap) was created in the editor using
custom mesh assets (UAssets) to reflect this virtual environment. These assets were created using the 3D
modelling software Blender [77] and imported from an FBX format into the editor along with generated
UV maps and collision meshes. Suitable materials were assigned and any dynamic behaviour (such as
a rotating fan) programmed using the visual scripting interface within the UE4 editor. A single player
was added to the map with controller configurations inherited from the built-in VR classes suitable for
use with the HTC Vive VR hardware. Particle-based visual effects were placed upstream in the tunnel
to provide smoke streaks, a common technique for experimental flow visualisation and often replicated
in virtual simulation environments [78].

4.1. Player Capabilities

For the game to be useful as a design and analysis tool, users must have a degree of run-time inter-
action with the environment and the solver. An in-game menu is the main device for interacting with
the simulation. However, some capabilities are mapped to controller buttons.

In addition to the ability to cycle through different objects at run-time, the user may rotate the object
to investigate the affect on flow angle on flow behaviour. This rotation is implemented in just a single
plane at present although its extension to other axes is trivial. The rotation of the object can be reset at
any time from the menu.

Some VR systems (like the HTC Vive) provide a tracking system to allow a user to physically move
around the space through walking in the real world. This positional tracking is harnessed to allow the
user to move around inside the wind tunnel in the same way. However, as the environment is larger than
the capture region for the VR positional tracking, a teleportation system was implemented. Triggered
by controller buttons, a user may glide forwards or backwards in the direction they are facing to allow
them to traverse larger distances.

12

\.

- -
Loop = 9275, Re » 5000, Omega » 1 985037, Nu = 0 001256, Deg = 20 e 2’8500, Omega » 1 986388 m-oﬁdhdbg‘.zo
v o 4

(a) Single-nozzle wand (b) Multi-nozzle wand

Figure 9: Screen capture of a user using the smoke wand capability to visualise the 3D flow field around the object.

(a) Streak Line configuration (b) Smoke Sheet configuration

Figure 10: Demonstration of the two different tunnel smoke configurations. The smoke sheet may be moved in the vertical plane
at run-time.

The visual representation of the controller in the game is changed for a mesh asset build to look like
a smoke wand. The controller trigger may be used in the same way to activate a particle system attached
to the controller tip. A screen capture of this capability in use is shown in Fig. 9. The user may also swap
the single-nozzle wand for a multi-nozzle rake wand with seven, coloured particle streaks whose smoke
provides an indication of flow rotation.

The general smoke visualisation in the tunnel may either be in the form of smoke streaks or a smoke
sheet. The latter may be positioned at regularly-spaced, discrete locations above the tunnel floor. Both
configurations of tunnel smoke are shown in Fig. 10.

Finally, the user may adjust the Reynolds number (velocity) of the simulated fluid flow where the
Reynolds number is defined based on the inlet velocity and the tunnel height.

4.2. User Interface Design

Mapping capabilities to controller buttons soon becomes impractical as the number of interactions
increase. Hence, we proposed an in-game menu attached to the top of the left-hand controller. It may
be shown or hidden using the a button on the controller. The options are sorted into categories that
each have a corresponding pane of buttons which can be displayed on the right-hand side of the menu
widget. The left-hand side thus offers category selection. The user may point at a button on either pane
and press a controller button to select it. The four menu panes are shown in Fig. 11 containing all of the
features of the tunnel.

13

308

Model Selection

Smoke Smoke Options Smoke

Wand Wand

Model Rotation

oD =

MOdel Smoke Sheet Height Model

(a) Smoke menu (b) Model menu

Wand Type |
smOke SmOke , Toggle Tunnel Lights

Wand O y Wand Reynolds Number

Environment Environment

MOdeI Fixed Rake Wand Model
Environment Environment ' Reset Simulation

(c) Wand menu (d) Environment menu

Figure 11: Screen captures of the different menu views currently implemented in the virtual wind tunnel user interface.

5. Component Integration

Having described the individual components required to build the virtual wind tunnel, we next
describe our integration of these components and highlight the general challenges this poses. An overall
schematic of how the components integrate is shown in Fig. 12

5.1. Solver Integration

To ensure modularity of the software, the LBM solver is compiled as a standalone library encapsulat-
ing all the dependencies required to run a flow calculation. A fagade software design pattern is the used
to provide an API for the library as shown in Fig. 13. This decision allows the LBM solver to be embedded
in any number of external applications without the need to reference any third-party dependencies.

However, in order to allow the game to access the data provided by the library, a new actor is created
and embedded inside the game world. This actor is added to the map through the editor and given a
bounding box visual representation which correspond to the computational domain boundaries. Its be-
haviour is defined such that the game engine will tick the actor during run-time execution. This provides
a mechanism for synchronised triggering of simulation iterations at the maximum update rate possible.
We call this actor class LbmPhysics and game components may interact with it as with any other actor
in the game. It is defined in Appendix A and is responsible for invoking LBM library methods. A view
of the virtual wind tunnel map with the LbmPhysics actor highlighted is shown in Fig. 14.

Finally, in order to have the particle streaks in the game describe the simulated field, the LbmPhysics
actor is assigned a UVectorFieldComponent. This is a UE4 actor, distributed with the engine, capable
of storing a 3D vector field. Particle systems in the map interpret this vector data as a velocity field and
will trace the vectors when passing through its region of influence. The contents of the vector field are
updated through the library API where vector field cells pull data from the underlying LBM grid.

5.2. Object Integration

The object capture module, like the solver, is built as a library and referenced by the both the game
and the solver to allow access to its capabilities at run-time. The module is capable of generating both a
point cloud and an STL surface mesh via run-time calls to the API. Both the solver library and the game
need to be made aware separately of the change of object event. This is because the game represents
object as a UStaticMeshComponent attached to a static mesh UAsset and the solver represents the object
as a set of solid wall boundary conditions. These two different representations therefore need handling
in two different ways.

The assets representing the objects in the game (e.g. mesh, materials and textures) must be present
in the game content directories before launch. The LbmPhysics actor is instructed to load these assets on
request, thus changing the visual representation of the object the user sees. As most CAD software used

14

Update View

Visualisation Engine

> Spawn/Kill Particles ‘i

_____________ e

Particle
Engine

Solver

i Create/Destroy Particle System i

Trigger Pressed ?

VR Headset

Parameter Changed

& Controllers

Refresh
Requested

Kinect

Head Moved

UE4
Camera
Engine

UE4
Render
Engine

_____________ L

{ Update Mesh

Object
Capture

[y

jaln

i Triangulation

’—'\ ___________________________ Y

1+ Write Asset

i Texture Mapping

i

Cameras

Figure 12: Schematic outlining how the solver and capture components integrate within the game.

Namespace
Class
Header
PCI Bus

External
Application

Library i

oblem
Host Memory

Lattice
Contents

[}
s
&
=}
2
i

Utilities

Lattice
Contents

CUDA Kernels

Figure 13: Illustration of the structure of the GPU-accelerated LBM library used as the physics solver in the virtual wind tunnel.

15

Figure 14: The virtual wind tunnel map as seen in the UE4 editor. The custom LbmPhysics actor for interfacing with the physics
solver is highlighted in orange.

(a) Raw point cloud (b) Voxelised representation (c) Solid boundary condition

Figure 15: Illustration of the stages in mapping a point cloud, under the voxel grid filter, to an LBM, label-based boundary repre-
sentation.

in engineering will most likely export meshes without a texture (UV) map, open-source tools such as
Blender [77] must be used to prepare the mesh accordingly and must be done as a pre-processing step
offline.

In order to generate the boundary conditions for the LBM solver, the point cloud produced by the
object capture pipeline is passed to the library at run-time. The library then applies a voxel grid filter to
the data, essentially sampling it to the LBM grid and labelling cells which contain at least one point as
solid. A very course, illustrative example of this process is shown in Fig. 15.

Rotation of the object is therefore implemented as two sequential function calls by the game:

1. rotate the visual mesh asset in the game
2. reinitialise the boundary conditions in the LBM simulation

The consequence of this is that the visual representation of the object is a fixed mesh with a static repre-
sentation of the boundary, whereas the representation of the object in the solver is resolution-dependent;
if resolution of the simulation is very course, definition of the object seen by the simulation reduces de-
spite the visual mesh remaining unaltered. Alternate representations such as BFL-type boundary con-
ditions [79] can be used to improve the accuracy but at the expensive of slowing the solver down due to
additional effort in computing the flow at the boundaries.

6. Measuring the Performance of Interactive Simulations

In Table 1, we quantified the performance of our CFD solver in terms of the metric MLUPS, an inter-
pretation of computational throughput favoured by the LBM community. However, when measuring

16

366

367

(<
=
=

I
N
E

AN

Q.

=~
=
S
=

I

<

2

3

| /
| /
| Z
| /
/ .
2 e Increasing 7
: | =
= >
2 | =
3 1 2
3 8
5 =
3 =
E | @
> k=
Q I 2 Increasing MLUPS
E 5 -
= | =
| =
|
|

Time Taken to Simulate (dtyyq7])

Figure 16: The relationship between wall clock time and simulated time and identification of the target range of real-time ratio 7’
for interactive simulations. T represents the gradient of any line drawn on the axes. An increase in the traditional throughput
measure of the LBM community (MLUPS) moves any point on the graph to the left. The Threshold of Interactivity represents the
lowest tolerable frame rate for continuous viewing and the Minimum Flow Limit represents the lowest tolerable rate of convection
of a structure of interest in the flow being studied.

the performance of interactive simulations, this is not sufficient. In [14], the ratio of the time step used in
the simulation dt;,, and how long it takes our computing hardware to simulate that time step dt,,qu is
defined as the Real-Time Ratio T, A T, < 1 defines a simulation running at or slower than real-time, typ-
ically the region achievable for interactive simulations at present depending on the accuracy required.

Here we extend the concept of real-time ratio further by considering the use case of interactive sim-
ulations: a typical user wants to run a simulation on a given flow problem such that

e They can smoothly view a quantity of interest while the simulation is running;
e Structures of interest convect through the visualised domain at an appropriate speed for study;

The first requirement imposes a maximum tolerable wall clock time before the results are updates
so infrequently that visualisation will appear ‘choppy’. Typically, humans require at least 24 frames per
second (fps) for smooth viewing. We define this limit as the Threshold of Interactivity. The second re-
quirement imposes a limit on the T,.. For a given time scale in the simulation (represented by dts;m,),
the throughput should be sufficiently high (or wall clock time sufficiently low) to update the results
frequently enough that structures of interest move at an appropriate speed. We define this as the Min-
imum Flow Limit. Thus we have bounded our simulation configuration below the Real-Time Threshold
= T, = 1 based on the user requirements as depicted in Fig. 16. It is important to note, that increasing
the throughput of computing devices will reduce the dt,,q1;, driving points to the left of the graph. This
will also increase T, accordingly.

Using these principles, we can identify for a range of scenarios how effective our virtual wind tunnel
implementation is for interactive simulation. The relevant tests are deferred for the production article.

6.1. Limitations

The implementation presented here is a prototype system originally designed for automotive external
aerodynamic design. However, there is huge potential for extension and migration to other applications.
In particular, this concept may be used with little modification to read in medical geometry and to sim-
ulate the flow of bodily fluids. Thus, the tool may be used as an interactive tool for medical analysis.
However, there are a number of limitations associated with the prototype which need to be addressed
before applications are be broadened.

17

387

414

Reliance on existing but inflexible UE4 visualisation components means that the loose coupling be-
tween the solver and visualisation degrades utility. Custom visualisation of the flow field may be im-
plemented by modifying the engine code. Shaders could be written to take GPU field data and set pixel
values accordingly [15, 80]. This tight integration of simulation and visualisation is a key enabler for
the technology.

When using the VectorField actor in UE4 to control the particle motion, a new vector field must be
constructed anew from GPU data using the classes provided by the engine and swapped with the current
version at flow update intervals. In practice, this requires both the passing of information between
the device (GPU) and the host as well as the repacking of data into the VectorField structure. This
bottleneck can be treated in future in two stages: first, the LBM data on the GPU must be structured
such that it maps directly onto the vector field source data without the need for reassembly on the host;
second, by modifying the particle simulation classes in the game engine source to allow direct swapping
of vector field source data resources.

Furthermore, a single vector field is restricted in size by the largest texture unit supported by the
engine (128%). This limits the overall size of the simulation if the LbmPhysics actor were to support just
a single vector field. A restriction on resolution, would therefore restrict accuracy. This issue may be
addressed by attaching multiple vector fields to a single LbmPhysics actor with vector field construction
performed using asynchronous background tasks to maintain parallelism.

Finally, using a game engine as the main time marching mechanism means that solver iterations are
directly coupled the frequency of the game. This frequency is generally set at between 60-90Hz. Even
with sub-cycling the solver, the frequency with which the simulation advances may not be high enough
for real-time simulation. Although it is not necessary to be real-time (but merely interactive) in some
cases [81], the game and solver ought to be coupled asynchronously to remove this tight coupling in
time and allow the solver to run as fast as possible.

Finally, UE4 games must have all their visual mesh assets at compile-time. This is a UE4 specification
to enable efficient rendering of 3D objects, however, it does prevent the generation of new objects for the
virtual wind tunnel at run-time in the present iteration.

7. Conclusions

This paper has presented an real-time interactive, virtual wind tunnel for engineering design and
development. The design and implementation has been detailed and validation and performance of
the underlying LBM solver given. Simulated results for the turbulent flow over a cube in a channel at a
modest resolution with no wall modelling shows excellent agreement with experimental data. Execution
of the 6.8M cell calculation was performed on commodity GPU hardware. A second simulation, with
no modelling was performed on a turbulent channel of Re, = 180 and showed near perfect agreement
with DNS data.

The virtual wind tunnel integrates object scanning and CAD import work-flow into a 3D wind tunnel
world, offering in-game user interaction with the real-time simulation kernel and visualisation customi-
sation through an in-game menu. Interaction within the virtual wind tunnel game is routed to the solver
through a single facade class which allows it to be used in different games with potentially different con-
texts. A range of smoke-based visualisation options are available and controllers may be used as smoke
wands for unobstructed, flexible investigation of the flow behaviour.

Performance bottlenecks in the design of integrating into UE4, which inhibit scalability, have been
identified and are the focus of current research. Possible avenues for application extension have also
been presented. As the LBM component is built as a library, it may already be used in other contexts
with little or no modification.

Finally, the use of virtual reality and game-engine integration provides a novel, immersive experience
for visualisation and huge potential for intuitive investigation and analysis. Coupling this mechanism
with a physically-accurate solver approaching real-time speeds in 3D, has created a novel and powerful
tool with a high potential for impact and future extension.

Acknowledgements

This work was supported by Engineering and Physical Science Research Council Impact Accelerator
Account (grant number: EP/K503782/1).

18

439

A. LbmPhysics Actor

The LbmPhysics actor used to couple the solver to the game is defined as follows:

/] wxxxxxsasnswswwwsr LhmPhysics . h sssssststssxns

// New structure to pass pointers

class DataPointers

{

UCLASS()

class JLR_VWT_API ALbmPhysics

{

public

int32 DataX;
int32 DataY;
int32 DataZ;
FBox Bounds;
int32 numPoints;

float const * const X;
float const * const Y;
float const * const Z;

/] Constructor with

DataPointers (int32 Nx,

initialisers

int32 Ny, int32 Nz,

const float »*Ux, const float =Uy, const float »Uz)
DataX(Nx), DataY(Ny), DataZ(Nz), X(Ux), Y(Uy), Z(Uz)

{
/] Assign bounds
Bounds.Min.X = xlbmBounds++;
Bounds.Min.Y = xlbmBounds++;
Bounds.Min.Z = xlbmBounds++;
Bounds.Max.X = xlbmBounds++;
Bounds.Max.Y = xlbmBounds++;
Bounds.Max.Z = xlbmBounds++;
// Number of points
numPoints = Nx * Ny * Nz;

};

GENERATED_BODY ()
public:
NNy,

/+ METHODS »/
1170111117

public AActor

/] Constructor and destructor

ALbmPhysics () ;
~ALbmPhysics ();

// Called when the game starts or when spawned — reads in all

to LBM data to a VectorField constructor

const float xlbmBounds,

the static

meshes representing the object visuals; binds to the pointers from where

the velocity data can be found to contruct the vector fields

virtual void BeginPlay() override;

19

// Called every frame — fires the LBM solver time step and recreates

vector field in the game
virtual void Tick(float DeltaSeconds) override;

// Methods to interact with the solver that must be accessed through
blueprints fired from menu selections —— these are essentially calls to the

solver API

UFUNCTION(BlueprintCallable , Category = "Interaction")

void setRe(float reynolds);

UFUNCTION(BlueprintCallable , Category = "Interaction")

void resetSim ();

UFUNCTION(BlueprintCallable , Category = "Interaction")

void rotateObject(float degrees, bool replace);

UFUNCTION(BlueprintCallable , Category = "Interaction")

void swapObject(int32 objectidx);

UFUNCTION(BlueprintCallable , Category
int32 getNumberOfObjectsAvailable ();

// Method to create a VectorFieldStatic with the data provided as a

MyFFGAContents structure

UODbject* CreateVectorFieldStatic (DataPointers =Data, UClass *InClass,

UODbject *InParent, FName InName);

// Method to build a PC from a file

"Solid.Objects")

bool readPointCloudPoints (PCpts* & _PCpts, FString filename);

PELETEEEETELT i rrry
/* SOLVER PROPERTIES =/

[ELETTEEET Ty

// LBM solver interface
Lumis* LumisInterface = nullptr;

// Reymnolds number

UPROPERTY (EditAnywhere, BlueprintReadWrite, Category =

int32 ReynoldsNumber = 5000;

// Update frequency

UPROPERTY (EditAnywhere, Category = "LBM")
int32 TicksPerRefresh = 10;

// Fudge factor

UPROPERTY (EditAnywhere, Category = "LBM")

float FudgeFactor = 20.0f;

// Current object selected

UPROPERTY (BlueprintReadWrite , Category = "Solid.Objects")

int32 currentObject = 0;

[ETETTETEEE T i rrry
/* VECTOR FIELD PROPERTIES =/

20

LEPETTETETT i rr il

// Structure with info for building a vector field object
DataPointers xFieldData;

// VectorField(s) that represent the LBM solver wvelocity field
TArray<UVectorFieldComponent*> VelocityFieldSegments;

L7 rrrry
/* General Data =%/

PETTTTETETET T

// Domain size (as returned by the Lumis Interface after creation)
int32 Nx;
int32 Ny;
int32 Nz;

// HUD text retrieval
UFUNCTION(BlueprintCallable , Category = "VR.HUD")
FString getStatText ();

private:

/] String containing status information
FString hud_string;

// Pointer to the HUD so we can change text etc. based on LBM solver
settings
AlbmHUDx hud;

// List of static meshes to be used for visual object swapping
TArray<UStaticMesh*> swappableMeshes;

// List of point clouds for each object
TArray<PCpts*> pointClouds;

// List of file names of the objects & point clouds to be loaded (from

object capture pipeline)
TArray<FString> objectNames;

/] Array of object lengths and positions
TArray<float> objectPositions;
TArray<float> objectLengths;

// Domain extents specified in UE coordinates
UPROPERTY (VisibleAnywhere , Category = "LBM")
FVector DomainExtents = FVector (540.0f, 540.0f, 270.0f);

// Object bounding box in UE relative coordinates
FBox ObjectBox;

// Domain size information
FVector DomainBoxScaling;

// Pointer to the mesh components which represents the domain and the

UStaticMeshComponent* BoxVisual;
UStaticMeshComponent* ObjectVisual;

21

object

613 /] Method for reading in the meshes from the file in the Input directory

614 int32 readObjectDataFromInputFile ();

o160 // Private method for adding a pre—loaded object mesh to the tunmnel
617 void setObjectMesh(int32 objectidx);

619 // Number of objects available

620 int32 numObjects;

622 },‘

e2s References

22 [1] D. Gatti, Turbulent Skin-Friction Drag Reduction at High Reynolds Numbers, Springer Interna-
625 tional Publishing, Cham, 2016, pp. 389-398.

e2s [2] S. Chen, G. D. Doolen, Lattice Boltzmann Method for Fluid Flows, Annual Review of Fluid Me-
627 chanics 30 (1) (1998) 329-364.

e2s [3] M. Mawson, Interactive Fluid-Structure Interaction with Many-core Accelerators, Ph.D. thesis,

620 School of Mechanical, Aerospace & Civil Engineering, The University of Manchester (2013).

s:0 [4] N. Delbosc, J. Summers, A. Khan, N. Kapur, C. Noakes, Optimized implementation of the Lattice
631 Boltzmann Method on a graphics processing unit towards real-time fluid simulation, Computers
632 & Mathematics with Applications 67 (2) (2014) 462 — 475, mesoscopic Methods for Engineering
633 and Science (Proceedings of ICMMES-2012, Taipei, Taiwan, 23-27 July 2012).

e« [B] A. Bernard, Virtual engineering: Methods and tools, Proceedings of the Institution of Me-
635 chanical Engineers, Part B: Journal of Engineering Manufacture 219 (5) (2005) 413-421.
636 doi:10.1243/095440505X32238.

ez [6] S. Bryson, C. Levit, The Virtual Windtunnel: An Environment for the Exploration of Three-
638 Dimensional Unsteady Flows, in: Visualization, 1991. Visualization '91, Proceedings., IEEE Con-
639 ference on, 1991, pp. 17-24, 407. do0i:10.1109/VISUAL.1991.175771.

s [7] G. S. Strumolo, V. Babu, Method and system for providing a virtual wind tunnel, uS Patent
6a1 6,088,521 (2000).

sz [8] A.Borrmann, P. Wenisch, C. van Treeck, E. Rank, Collaborative computational steering: Principles

643 and application in hvac layout, Integr. Comput.-Aided Eng. 13 (4) (2006) 361-376.

sae [9] P. Wenisch, C. van Treeck, A. Borrmann, E. Rank, O. Wenisch, Computational steering on dis-
645 tributed systems: Indoor comfort simulations as a case study of interactive CFD on supercomput-
646 ers, International Journal of Parallel, Emergent and Distributed Systems 22 (4) (2007) 275-291.

ear [10] J. Linxweiler, M. Krafczyk, J. Tolke, Highly interactive computational steering for coupled 3D flow
o4 problems utilizing multiple GPUs, Computing and Visualization in Science 13 (7) (2010) 299-314.
eso [11] N. Delbosc, Real-time simulation of indoor air flow using the lattice Boltzmann method on
650 Graphiscs Processing Units, Ph.D. thesis, School of Mechanical Engineering, The University of
651 Leeds (2015)

ez [12] M. S. Glessmer, C. F. Janflen, Using an Interactive Lattice Boltzmann Solver in Fluid Mechanics
053 Instruction, Computation 5 (3) (2017). doi:10.3390/computation5030035.

e [13] A. R. G. Harwood, A. J. Revell, Parallelisation of an interactive lattice-Boltzmann method on an
055 Android-powered mobile device, Advances in Engineering Software 104 (1) (2017) 38-50.

e [14] A.R. G. Harwood, A. J. Revell, Interactive flow simulation using Tegra-powered mobile devices,
657 Advances in Engineering Software 115 (Supplement C) (2018) 363 —373.

22

[15] A. R. G. Harwood, GPU-powered, interactive flow simulation on a peer-to-peer
group of mobile devices, Advances in Engineering Software 133 (2019) 39 - 51
doi:https://doi.org/10.1016 /j.advengsoft.2019.04.003.

[16] C.Cruz-Neira, J. Leigh, M. Papka, C. Barnes, S. M. Cohen, S. Das, R. Engelmann, R. Hudson, T. Roy,
L. Siegel, C. Vasilakis, T. A. DeFanti, D. J. Sandin, Scientists in wonderland: A report on visualiza-
tion applications in the CAVE virtual reality environment, in: Proceedings of 1993 IEEE Research
Properties in Virtual Reality Symposium, 1993, pp. 59-66. doi:10.1109/VRAIS.1993.378262.

[17] M. L Billen, O. Kreylos, B. Hamann, M. A. Jadamec, L. H. Kellogg, O. Staadt, D. Y. Sumner, A
geoscience perspective on immersive 3D gridded data visualization, Computers & Geosciences
34 (9) (2008) 1056 — 1072. doi:https://doi.org/10.1016/j.cageo.2007.11.009.

[18] T. W. Kuhlen, B. Hentschel, Quo Vadis CAVE: Does Immersive Visualization Still Matter?, IEEE
Computer Graphics and Applications 34 (5) (2014) 14-21. doi:10.1109/MCG.2014.97.

[19] Open VR, https://github.com/ValveSoftware/openvr, accessed: 2017-12-12.

[20] J. Jacobson, M. Lewis, Game engine virtual reality with caveut, Computer 38 (4) (2005) 79-82.
doi:10.1109/MC.2005.126.

[21] S. Wang, Z. Mao, C. Zeng, H. Gong, S. Li, B. Chen, A new method of virtual reality
based on unity3d, in: 2010 18th International Conference on Geoinformatics, 2010, pp. 1-5.
do0i:10.1109/GEOINFORMATICS.2010.5567608.

[22] W. Yan, C. Culp, R. Graf, Integrating BIM and gaming for real-time interactive
architectural visualization, Automation in Construction 20 (4) (2011) 446 - 458.
doi:https://doi.org/10.1016 /j.autcon.2010.11.013.

[23] C.Donalek, S. G. Djorgovski, A. Cioc, A. Wang, J. Zhang, E. Lawler, S. Yeh, A. Mahabal, M. Graham,
A. Drake, S. Davidoff, J. S. Norris, G. Longo, Immersive and collaborative data visualization using
virtual reality platforms, in: 2014 IEEE International Conference on Big Data (Big Data), 2014, pp.
609-614. doi:10.1109/BigData.2014.7004282.

[24] J. Wang, M. Lewis, J. Gennari, A game engine based simulation of the NIST urban search and
rescue arenas, in: Proceedings of the 2003 Winter Simulation Conference, 2003., Vol. 1, 2003, pp.
1039-1045 Vol.1. doi:10.1109/WSC.2003.1261528.

[25] A. C. A. M¢l, C. A. F. Jorge, P. M. Couto, Using a Game Engine for VR Simulations
in Evacuation Planning, IEEE Computer Graphics and Applications 28 (3) (2008) 6-12.
doi:10.1109/MCG.2008.61.

[26] J. R. Juang, W. H. Hung, S. C. Kang, Using game engines for physical-based simulations — a fork-
lift, in: Special Issue: Use of Gaming Technology in Architecture, Engineering and Construction,
Vol. 16, 2011, pp. 3-22, http://www.itcon.org/2011/2.

[27] K. Yang, J. Jie, S. Haihui, Study on the virtual natural landscape walkthrough by using
Unity 3D, in: 2011 IEEE International Symposium on VR Innovation, 2011, pp. 235-238.
doi:10.1109/ISVRI.2011.5759642.

[28] A. Falcone, A. Garro, E. Longo, F. Spadafora, Simulation Exploration Experience: A Communi-
cation System and a 3D Real Time Visualization for a Moon Base Simulated Scenario, in: 2014
IEEE/ACM 18th International Symposium on Distributed Simulation and Real Time Applications,
2014, pp. 113-120. do0i:10.1109/DS-RT.2014.22.

[29] A.Li, X. Zheng, W. Wang, Motion Simulation of Hydraulic Support Based on Unity 3D, in: Pro-
ceedings of the First International Conference on Information Sciences, Machinery, Materials and
Energy, Advances in Intelligent Systems Research, 2015. doi:10.2991/icismme-15.2015.128.

[30] U. Rippel, K. Schatz, Designing a BIM-based serious game for fire safety evacua-
tion simulations, Advanced Engineering Informatics 25 (4) (2011) 600 - 611, special
Section: ~Advances and Challenges in Computing in Civil and Building Engineering.
doi:https://doi.org/10.1016/j.a€i.2011.08.001.

23

[31] J.Lewis, D. Brown, W. Cranton, R. Mason, Simulating visual impairments using the Unreal Engine
3 game engine, in: 2011 IEEE 1st International Conference on Serious Games and Applications for
Health (SeGAH), 2011, pp. 1-8. d0i:10.1109/SeGAH.2011.6165430.

[32] W. Meng, Y. Hu, J. Lin, F. Lin, R. Teo, ROS + Unity: An efficient high-fidelity 3D multi-
UAV navigation and control simulator in GPS-denied environments, in: IECON 2015 -
41st Annual Conference of the IEEE Industrial Electronics Society, 2015, pp. 002562-002567.
d0i:10.1109/IECON.2015.7392488.

[33] W.Qiu, A. Yuille, UnrealCV: Connecting Computer Vision to Unreal Engine, Springer International
Publishing, Cham, 2016, pp. 909-916.

[34] K. Yang, J. Jie, The Designing of Training Simulation System Based on Unity 3D, in: 2011 Fourth
International Conference on Intelligent Computation Technology and Automation, Vol. 1, 2011, pp.
976-978. doi:10.1109/ICICTA.2011.245.

[35] E. Sudarmilah, R. Ferdiana, L. E. Nugroho, A. Susanto, N. Ramdhani, Tech review: Game
platform for upgrading counting ability on preschool children, in: 2013 International Con-
ference on Information Technology and Electrical Engineering (ICITEE), 2013, pp. 226-231.
doi:10.1109/ICITEED.2013.6676243.

[36] F.King,].Jayender, S. K. Bhagavatula, P. B. Shyn, S. Pieper, T. Kapur, A. Lasso, G. Fichtinger, An Im-
mersive Virtual Reality Environment for Diagnostic Imaging, Journal of Medical Robotics Research
01 (01) (2016) 1640003. doi:10.1142/52424905X16400031.

[37] P. Zhou, X. Wang, U. Morales, Integration of Virtual Reality and CFD Techniques for Ther-
mal Fluid Education, in: Proceedings of the 2017 Heat Transfer Summer Conference, 2017.
doi:10.1115/HT2017-4793.

[38] Frostbite Engine — the most adopted platform for game development — EA, https://www.ea.com/
frostbite, accessed: 2017-12-12.

[39] CryENGINE3 - Crytek, http://www.crytek.com/cryengine/cryengine3/overview, accessed:
2017-12-12.

[40] Source SDK - Valve Development Community, https://developer.valvesoftware.com/wiki/
SDK, accessed: 2017-12-12.

[41] Unity Game Engine, https://unity3d.com/, accessed: 2017-12-12.

[42] Game Engine Technology by Unreal, https://www.unrealengine.com/en-US/
what-is-unreal-engine-4, accessed: 2017-12-12.

[43] Havok Physics, https://www.havok.com/physics/, accessed: 2017-12-12.

[44] GameWorks PhysX Overview, https://developer.nvidia.com/gameworks-physx-overview,
accessed: 2017-12-12.

[45] J. Stam, Stable fluids, in: Proceedings of the 26th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH 99, ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, 1999, pp. 121-128. d0i:10.1145/311535.311548.
URL http://dx.doi.org/10.1145/311635.311548

[46] J. Brackbill, D. Kothe, H. Ruppel, Flip: A low-dissipation, particle-in-cell method for fluid flow,
Computer Physics Communications 48 (1) (1988) 25 — 38. doi:https://doi.org/10.1016/0010-
4655(88)90020-3.

[47] J. M. Cohen, S. Tariq, S. Green, Interactive Fluid-particle Simulation Using Translating Eulerian
Grids, in: Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games, 13D "10, ACM, New York, NY, USA, 2010, pp. 15-22. doi:10.1145/1730804.1730807.

[48] M. Miiller, D. Charypar, M. Gross, Particle-based fluid simulation for interactive applications, in:
Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
SCA ’03, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 2003, pp. 154-159.

24

798

[49] M. Macklin, M. Miiller, N. Chentanez, T.-Y. Kim, Unified Particle Physics for Real-time Applica-
tions, ACM Trans. Graph. 33 (4) (2014) 153:1-153:12.

[50] J. Bender, M. Miiller, M. A. Otaduy, M. Teschner, M. Macklin, A survey on position-based
simulation methods in computer graphics, Comput. Graph. Forum 33 (6) (2014) 228-251.
doi:10.1111/cgf.12346.

[51] K. Sharp, F. Matschinsky, Translation of Ludwig Boltzmann’s Paper “On the Relationship between
the Second Fundamental Theorem of the Mechanical Theory of Heat and Probability Calculations
Regarding the Conditions for Thermal Equilibrium” sitzungberichte der kaiserlichen akademie der
wissenschaften. mathematisch-naturwissen classe. abt. ii, Ixxvi 1877, pp 373-435 (wien. ber. 1877,
76:373-435). reprinted in wiss. abhandlungen, vol. ii, reprint 42, p. 164-223, barth, leipzig, 1909,
Entropy 17 (4) (2015) 1971-2009.

[52] The lattice Boltzmann method for compressible flows at high Mach number.

[53] J. Tolke, Implementation of a lattice boltzmann kernel using the compute unified device ar-
chitecture developed by nvidia, Computing and Visualization in Science 13 (1) (2008) 29.
doi:10.1007/s00791-008-0120-2.

[54] C. Obrecht, F. Kuznik, B. Tourancheau, J.-J. Roux, Scalable lattice Boltzmann
solvers for CUDA GPU clusters, Parallel Computing 39 (6) (2013) 259 - 270.
doi:https://doi.org/10.1016 /j.parco.2013.04.001.

[55] X. Wang, Y. Shangguan, N. Onodera, H. Kobayashi, T. Aoki, Direct Numerical Simula-
tion and Large Eddy Simulation on a Turbulent Wall-Bounded Flow Using Lattice Boltz-
mann Method and Multiple GPUs, Mathematical Problems in Engineering 2014 (2014).
doi:http://www.doi.org/10.1155/2014/742432.

[56] M.]. Mawson, A.]. Revell, Memory transfer optimization for a lattice Boltzmann solver on Kepler
architecture nVidia GPUs, Computer Physics Communications 185 (10) (2014) 2566-2574.

[57] Y. Koda, E-S. Lien, The Lattice Boltzmann Method Implemented on the GPU to Simulate the Tur-
bulent Flow Over a Square Cylinder Confined in a Channel, Flow, Turbulence and Combustion
94 (3) (2015) 495-512. d0i:10.1007/s10494-014-9584-y.

[58] N.-P. Tran, M. Lee, S. Hong, Performance Optimization of 3D Lattice Boltzmann Flow Solver on a
GPU, Scientific Programming 2017 (2017). doi:http://www.doi.org/10.1155/2017/1205892.

[59] W. Li, X. Wei, A. Kaufman, Implementing lattice Boltzmann computation on graphics hardware,
The Visual Computer 19 (7) (2003) 444-456. doi:10.1007/s00371-003-0210-6.

[60] NVIDIA, CUDA Toolkit Documentation v9.1.85, http://docs.nvidia.com/cuda/, , Accessed:
2017-12-12.

[61] P.L.Bhatnagar, E. P. Gross, M. Krook, A Model for Collision Processes in Gases. I. Small Amplitude
Processes in Charged and Neutral One-Component Systems, Phys. Rev. 94 (1954) 511-525.

[62] D.P. Ziegler, Boundary conditions for lattice Boltzmann simulations, Journal of Statistical Physics
71 (5) (1993) 1171-1177.

[63] H. Yu, S. S. Girimaji, L.-S. Luo, DNS and LES of decaying isotropic turbulence with and without
frame rotation using lattice Boltzmann method, Journal of Computational Physics 209 (2) (2005)
599 — 616. doi:https://doi.org/10.1016/j.jcp.2005.03.022.

[64] Z.Guo,C.Zheng, B. Shi, Discrete lattice effects on the forcing term in the lattice Boltzmann method,
Physical Review E 65 (2002) 046308.

[65] E.Meinders, K. Hanjali¢, Vortex structure and heat transfer in turbulent flow over a wall-mounted
matrix of cubes, International Journal of Heat and Fluid Flow 20 (3) (1999) 255 — 267.

[66] A.Hellsten, P. Rautaheimo, S. Laine, T. Siikonen, 8th ercoftac/iahr/cost workshop on refined tur-
bulence modelling (Dec 1999).

25

835

[67] A.R.G. Harwood, P. Wenisch, A. J. Revell, A Real-Time Modelling and Simulation Platform for
Virtual Engineering Design and Analysis, in: Proceedings of 6th European Conference on Compu-
tational Mechanics (ECCM 6) and 7th European Conference on Computational Fluid Dynamics
(ECFD 7), 11-15 June 2018, Glasgow, UK, ECCOMAS, 2018.

[68] W. Boehler, A. Marbs, 3D Scanning Instruments, in: Proceedings of the CIPA WG 6 International
Workshop on Scanning for Cultural Heritage Recording, Ziti, Thessaloniki, 2002, pp. 9-18.

[69] B. Curless, From Range Scans to 3D Models, ACM SIGGRAPH Computer Graphics 33 (4) (1999)
3841.

[70] T. Butkiewicz, Low-cost coastal mapping using Kinect v2 time-of-flight cameras, in: 2014 Oceans -
St. John's, 2014, pp. 1-9.

[71] P. Fankhauser, M. Bloesch, D. Rodriguez, R. Kaestner, M. Hutter, R. Siegwart, Kinect v2 for mo-
bile robot navigation: Evaluation and modeling, in: 2015 International Conference on Advanced
Robotics (ICAR), 2015, pp. 388-394.

[72] L. Yang, L. Zhang, H. Dong, A. Alelaiwi, A. E. Saddik, Evaluating and Improving the Depth Accu-
racy of Kinect for Windows v2, IEEE Sensors Journal 15 (8) (2015) 4275-4285.

[73] J. Smisek, M. Jancosek, T. Pajdla, 3D with Kinect, in: Consumer Depth Cameras for Computer
Vision, Springer, 2013, pp. 3-25.

[74] E. Lachat, H. Macher, T. Landes, P. Grussenmeyer, Assessment and calibration of a rgb-d camera
(kinect v2 sensor) towards a potential use for close-range 3d modeling, Remote Sensing 7 (10)
(2015) 13070-13097. doi:10.3390/1s71013070.

[75] R. B. Rusu, S. Cousins, 3D is here: Point Cloud Library (PCL), in: Robotics and Automation
(ICRA), 2011 IEEE International Conference on, 2011, pp. 1-4.

[76] F.Bernardini, J. Mittleman, H. Rushmeier, C. Silva, G. Taubin, The ball-pivoting algorithm for sur-
face reconstruction, IEEE Transactions on Visualization and Computer Graphics 5 (4) (1999) 349-
359. d0i:10.1109/2945.817351.

[77] Blender 3D — a 3D modelling and rendering package, http://www.blender.org, accessed: 2017-
12-12.

[78] W. von Funck, T. Weinkauf, H. Theisel, H. P. Seidel, Smoke Surfaces: An Interactive Flow Visual-
ization Technique Inspired by Real-World Flow Experiments, IEEE Transactions on Visualization
and Computer Graphics 14 (6) (2008) 1396-1403. doi:10.1109/TVCG.2008.163.

[79] M. Bouzidi, M. Firdaouss, P. Lallemand, Momentum transfer of a Boltzmann-lattice fluid with
boundaries, Physics of Fluids 13 (11) (2001) 3452-3459.

[80] N. Koliha, C. F. Janflen, T. Rung, Towards Online Visualization and Interactive Monitoring
of Real-Time CFD Simulations on Commodity Hardware, Computation 3 (3) (2015) 444-478.
doi:10.3390/computation3030444.

[81] A. R. G. Harwood, Interactive Modelling and Simulation for Engineering Design and Analysis,
NAFEMS Benchmark Magazine Oct 2018 (2018) 20-24.

26

