
An Interactive, Virtual Wind Tunnel using Virtual Reality and Unreal
Engine 4

Adrian R. G. Harwood∗, Alistair J. Revell
School of Mechanical, Aerospace and Civil Engineering, The University of Manchester,

Sackville Street, M1 3BB, United Kingdom

20th May 2019

Abstract

This article presents an integrated, interactive modelling and simulation tool for aerodynamic design
and analysis. The development and coupling of a GPU-accelerated Computational Fluid Dynamics
(CFD) library, a 3D scanning library and a virtual-reality-powered video game are presented and the re-
sulting virtual wind tunnel described. Users of the tunnel may interact with both geometry and solver
from within the virtual environment providing a truly unique tool for performing high-level aerody-
namic analysis around imported and scanned objects. Here we introduce the relevant technologies and
approaches used to build the components and discuss the technical challenges of integrating them. The
flow solver is validated against experimental data for a representative turbulent flow and demonstrates
excellent agreement with available data. We also present the peak performance of the solver on cur-
rent hardware. Limitations and potential expansions for this proof of concept are discussed as well as
applications in a range of other scientific fields.
Keywords: Virtual Reality, Interactive Physics, Lattice-Boltzmann Method, CUDA, Unreal Engine 4

1. Introduction1

Modelling and simulation is an essential part of engineering. Physical testing of designs can require2

significant effort and expense; test components must be manufactured and suitable test facilities con-3

structed, acquired or hired. Furthermore, based on the results of testing, designs and test procedures4

may need to be reworked incurring further costs in terms of both time and money. Modelling and sim-5

ulation avoids this expense by allowing engineers to conduct a wide range of tests virtually. As designs6

can remain entirely digital, this activity generally occurs early in the design process. Upstream modifi-7

cations of a design are almost always cheaper to implement compared with a downstream counterpart.8

Modelling and simulation in engineering is a complex and sometimes costly process, with simula-9

tions taking time and resources to configure, run and post-process. Typical use cases of modelling and10

simulation in engineering require highly accurate modelling of potentially complex phenomena and11

thus, simulation run times can be of the order of days or weeks [1]. However, in the case of early-stage12

design, there is a recognised need to run a large number of fast simulations with reduced accuracy to13

allow early-stage development or communication of concepts and principles. Therefore, it is necessary14

for researchers to develop modelling and simulation approaches which can be used legitimately to pro-15

vide lower accuracy estimates in a very short amount of time. This relaxation of requirements allows16

reduced-order modelling and increased approximation, creating opportunities for simulations to be run17

at ‘interactive speeds’. In such simulations, results are simulated and visualised instantly, allowing users18

to also interact with, and reconfigure, their simulations at run time.19

Computational Fluid Dynamics (CFD) is a modelling and simulation discipline which simulates the20

behaviour of fluids with the fluid represented by a grid of control volumes (cells) or a collection of21

particles. In recent decades, CFD simulations based on the Boltzmann equation have been increased22

in popularity and are capable of representing macroscopic hydrodynamics correctly [2]. The princi-23

pal advantage of these formulations over more traditional CFD methods which solve the macroscopic24

Navier-Stokes Equations is the ability to accelerate the calculation on mass-parallel hardware such as25

∗Corresponding author
Email address: adrian.harwood@manchester.ac.uk (Adrian R. G. Harwood)



Solver Game

Object

Capture

Viewer

Physical Objects

Digital Objects

User

Virtual Wind Tunnel

Figure 1: The virtual wind tunnel concept integrating three key areas of technology to realise a working prototype.

Graphics Processing Units (GPUs). This is enabled principally by to the spatial locality of the numeri-26

cal schemes involved. In many cases, the computational throughput of such simulations is so high that27

predictions take place at speeds approaching real-time [3, 4], thus facilitating interactive applications.28

An application which combines an interactive flow solver with an in-situ visualisation and user in-29

terface is termed a ‘virtual wind tunnel’ and is a tool often identified as part of the virtual engineering30

paradigm [5]. Virtual wind tunnels represent a shift in applied CFDmethodologies and offer the poten-31

tial to transform the way CFD is used within the industry. However, in order for them to be considered32

more than simply ‘toys’, work must be done to integrate useful physical modelling of a suitable degree33

of accuracy. In this paper, we present our implementation of a virtual wind tunnel incorporating a state34

of the art GPU-accelerated flow solver, virtual reality (VR) interaction and a 3D object capture facility35

and mesh processor. These capabilities are integrated to allow flow round physical or digital objects to36

be simulated, viewed and interactively investigated by a user. Figure 1 illustrates the concept realised37

by the implementation.38

1.1. Previous Virtual Wind Tunnels39

The concept of a virtual wind tunnel is not new, with the 20th century work of Bryson and Levitt40

[6] and the patent of Strumolo and Babu [7] recognising the potential for interactive investigation tools41

in engineering design. However, in general, older incarnations of the virtual wind tunnel concept were42

built for the inspection of pre-computed data. More recently, the potential for a real-time, interactive43

CFD simulation is starting to be realised. The work of Bormann et al. [8], Wenisch et al. [9], Linxweiler44

et al. [10], Delbosc [11], Glessmer and Janßen [12] as well as Harwood and Revell [13–15] introduce45

different realisations of interactive CFD solutions for the run-time steering and simulation modification.46

However, interaction and visualisation elements of these realisations have been, thus far, limited to47

desk-based interfaces with ‘flat’ interaction through widgets, touch gestures or mouse pointers. Their48

user interfaces deliver scientific presentations of information Fig. 2 which, although very capable, do not49

present a truly immersive or intuitive simulation environment for the broader user base. Conversely,50

the present work includes VR and incorporates its inherent ability for head and controller tracking to51

provide a more immersive experience for a user.52

2



Figure 2: Scientific interface of the VirtualFluids interactive CFD application [10].

1.2. Virtual Reality, Virtual Environments and Game Engines53

A virtual wind tunnel is, at least in part, an enhanced virtual environment, the technology for which54

has been steadily advancing. The application of 3D virtual environments in scientific fields was origi-55

nally motivated by the need to collaboratively visualise spatially 3D data [16, 17]. Such environments56

are an effective means of communicating this type of information due to the added dimensionality per-57

ceived by humans with binocular vision [17]. Such visualisation environments are termed ‘CAVEs’ and58

have been used to communicate complex 3D architectural, medical, manufacturing and geographical59

data [18]. Virtual environments can be built digitally, acquired from CAD tools or scanned using depth-60

sensing cameras and displayed along with simulation results or other datasets.61

CAVE-type solutions are usually projector-based, and hence are expensive to purchase and require62

a large amount of space to set up and use. More recently, virtual environments have made use of head-63

mounted displays (HMD) such as the HTC Vive and Oculus Rift headsets, a more affordable, compact64

solution. Manipulation of 3D environments can also be performed using associated controllers. The65

availability of software development kits (SDKs) like OpenVR [19] allow developers to easily harness66

the power of VR kits for a more immersive visualisation and navigation experience [20–23].67

3D video games rely heavily on the construction of a realistic virtual environment to present a con-68

vincing interpretation of reality to a player. More recent video games support the integration of HMDs69

and VR hardware as the principal means of user interaction and researchers in a wide range of fields70

have been quick to exploit this potential for analysis and testing [24–29], disaster and evacuation simu-71

lation [25, 30], the simulation of physical impairment [31], computer vision [32, 33] and applications in72

education and training [34–37].73

Video games are built and run using a collection of tools known as a game engine. Game engine pack-74

ages include authoring tools for the creation of 3D worlds (a 3D editor application), the automation of75

game logic within a world (a scripting interface) and a comprehensive set of APIs for the management76

of interaction between world components (called actors). Game engines include powerful rendering ca-77

pabilities responsible for scene transformation, shading and lighting and typically incorporate a physics78

engine which provides localised physical modelling. Figure 3 shows the typical components of a game79

engine package and also illustrates the plethora of managed capabilities. Programmers may also extend80

these capabilities through the definition of their own actor classes. Game engines, thus, provide a capa-81

ble platform on which 3D interactive simulation tools may be built. However, many of the more mature82

game engines are often proprietary such as Frostbite [38], CryEngine3 [39] and Source [40] and must83

be licensed for commercial use. Unity3D [41] and Unreal Engine 4 [42] however, are relatively mature84

3



Hardware

Drivers

Operating System

Core Libraries

Resources (Game Assets)

Low-Level

Renderer
Physics

Human

Interface 

Devices

Visual

Effects
Animation

Foundations
(e.g. Scripting,

World Management)

Game-Specific Systems

Player 

Mechanics

Game 

Cameras

Artificial 

Intelligence

Figure 3: Illustration of a generic game engine with its key constituents.

engines that are free for educational or academic use.85

1.3. Real-Time Game Engine Physics86

If we propose using a game engine for visualisation and interaction purposes, it raises the question as87

to whether we should consider using the physics simulation capabilities available within those engines88

to simulate the fluid. The simulation of fluids and flexible structures in real-time is indeed offered by89

some game engines or by game-engine-compatible third party libraries such as Havok [43] or PhysX90

[44]. Existingmodels developed for these libraries startedwithin the computer graphics community and91

offer impressive levels of performance. However, not all simulation in computer graphics, is physically-92

based; a simulation which looks convincing can be achieved without the need for a physically-based93

model. In some cases, where exaggerated behaviour is required (such as for explosions in games and94

films), physically-based simulation would produce an uninspiring result.95

Physically-based models for fluid simulation in games and animation attempt to solve the Navier-96

Stokes equations on either a grid (Eulerian representation) or a set of moving particles (Lagrangian97

representation). In order to achieve real-time evolution, these solvers are typically implemented to run98

on commodity graphics hardware. Examples of Navier-Stokes solvers used for fluid simulation in games99

include Stable Fluids [45], FLIP [46], APEX [47] and Smoothed-Particle Hydrodynamics [48]. However,100

the purpose of a game physics simulation is not to provide a high-fidelity result but to provide visual101

plausibility. Therefore, it is often the case that simplifications are made to the equations through mod-102

elling or stringent domain size restrictions in order to maintain speed or stability, for example:103

4



• Removal of non-linear terms in the equations.104

• Restriction on the degrees of freedom.105

• Use of low-order, local and/or explicit solvers with large time steps.106

• Use of low-tolerance iterative solution processes.107

• Approximation of fluid viscosity through numerical error.108

The Flex simulation framework [49, 50], achieves very convincing, fast and stable results but does109

not solve Navier-Stokes at all. Instead it replaces the full governing equations by a set of particle-particle110

positional constraints representing physical heuristics. These constraints, although physically-based,111

collectively do not represent the full physics of the problem being simulated. However, the resulting112

numerics reduce to a linear system which can be solved rapidly with particle dynamics producing visu-113

ally convincing and stable behaviour.114

In summary, game physics solvers produce simulations that are fast, robust and integrate well with115

rendering pipelines. However, they often lack physical details due to numerical errors and artefacts pro-116

duced by aggressive over-approximation. Despite their impressive speed and stability, their inflexibility117

and over-simplification means they lack the control over accuracy required for the standard of simu-118

lation demanded by engineers. Thus, in this work we opt to replace the flow physics engine shipped119

with our choice of game engine with our own physically-based LBM simulation which offers a suitable120

balance between accuracy and speed acceptable to engineers.121

In the remainder of this article, we discuss our developments in the three key areas of technology122

necessary for realising the virtual wind tunnel: the solver, the object scanner and the game (c.f. Fig. 1).123

The flow solver is validated for a 3D turbulent channel flow in Section 2.2. We then conclude with some124

limitations of the current prototype in Section 6.1 and summarise in Section 7 with some remarks on125

the limitations as well as future trends for the underlying technology. We also identify a number of126

opportunities in other disciplines for which this technology could be adapted.127

2. Solver Development128

The flow solver component of Fig. 1 is a GPU-accelerated implementation of the Lattice-Boltzmann129

Method (LBM) [2]. Unlike traditional CFDmethods which solve some form of the Navier-Stokes equa-130

tions, the LBM represents fluid dynamics in terms of a discrete Boltzmann transport equation. Rather131

than the transport quantity being a macroscopic variable such as density or momentum, or a micro-132

scopic property such as the velocity of a fluid particle, the Boltzmann equation models the transport of133

a set of mesoscopic particle distribution functions f . A single value of f represents probability of finding134

a particle with a particular velocity ~c at a given location in space and time. The redistribution of these135

probabilities in time is enforced through a collision model Ω. The general Boltzmann equation is given136

in Eq. (1a).137

A discrete, computational domain on which to solve this equation is represented as a uniform Carte-138

sian grid of cells, with nodal locations at cell centres, inter-connected by a finite set of lattice links. The139

set of links {i} dictates admissible directions along which individual fi quantities may be convected. A140

set of vectors {~ci} are associated with the set of lattice links.141

After discretisation, the Boltzmann equation may be expressed as in Eq. (1b). The left-hand side of142

Eq. (1b) represents the convection of fi along lattice link i to an adjacent node – termed the streaming143

step. The values to be convected are computed by performing a collision operation Ω on the current set144

of f values at a given node as per the right-hand side of the equation. The collision operation is carried145

out by relaxing the current distribution functions towards a local equilibrium distribution feq which is146

a second-order expansion in the macroscopic velocity of the Maxwell-Boltzmann distribution [51]. This147

part of the evaluation is termed the collision step. An illustration of an LBM time step is given in Fig. 4.148 (
∂

∂t
+ ~c · ∇

)
f = Ω (1a)

fi(~x, t)− fi(~x+ ~ci∆t, t+ ∆t) = Ω(fi, f
eq
i ) (1b)

149

Macroscopic quantities are related to the mesoscopic distribution functions through their first two150

moments whose discrete forms are given in Eq. (2).151

5



Collide Stream

Update Macroscopic & Equilibrium

fi

Cell Node Lattice Link

Figure 4: Illustration of the LBMwith discrete cells shown as shaded blocks, lattice links as dashed lines the distribution functions
f as coloured arrows. Populations before collision are red, populations after are blue.

ρ =
∑
i

fi (2a)

ρuj =
∑
i

ci,jfi (2b)
152

The LBM recovers the quasi-incompressible Navier-Stokes equations at the macroscale so long as153

the lattice Mach number remains small. This is due to the fact that the equilibrium function used in the154

collision process is developed through a local, second order expansion in the velocity. Its application is,155

therefore, limited to incompressible flow at present with compressible extensions of the method an area156

of active research [52].157

2.1. Implementation on the GPU158

The main appeal of LBM for CFD researchers is the spatial locality and simplicity of Eq. (1b). This159

allows the method to be parallelised on graphics hardware and executed much more rapidly than tradi-160

tional CFD methods which often require highly non-local interpolation and differencing stencils. This161

work uses LBM due to its ability to provide accurate modelling for the engineering community while162

offering the potential for acceleration up to real-time speeds for interactive applications.163

The suitability of LBM for general purpose GPU (GPGPU) computing has seen numerous, highly-164

efficient implementations of LBM on GPU in recent years [4, 53–58]. Although initially developed using165

graphics APIs [59], higher-level APIs for GPGPU computing (such as CUDA from NVIDIA [60]) have,166

more recently, made this pursuit even more accessible to researchers from a range of disciplines.167

In order to maximise the performance of the LBM algorithm on a GPU, the limitations of GPU hard-168

ware need to be understood. The single-instruction-multiple-thread (SIMT) execution model used by169

GPUs is most efficient when all threads (i.e. lattice nodes, assuming one-to-one matching between170

threads and nodes) perform the same set of instructions. Hence, branch divergence should be avoided.171

Furthermore, the LBM requires each thread to read and write each population to and from GPU main172

memory. This is a costly operation and hence the algorithm should be implemented to minimise global173

memory operations and use as much on-chip, cache memory as possible. These, along with other es-174

tablished guidelines for performance are summarised neatly in [11].175

The performance of an LBMalgorithm can bemeasured in terms of the number of lattice nodeswhich176

can be updated (complete stream and collide) in a physical second of wall clock time. This measure is177

given the unitsMillion Lattice Updates Per Second (MLUPS) and is computed by usingwall clock timers178

in the code as179

MLUPS =
N × T
tw

(3)

whereN is the total number of lattice nodes and tw is the wall clock time for executing T time steps. The180

LBM on GPU is memory-bound [56] and hence throughput, as measured in MLUPS, will only increase181

up to a point at which the memory bandwidth of the device becomes saturated and execution begins182

6



Authors Year GPU MLUPS
Tölke et al. [53] 2008 8800 Ultra 200-600
Mawson [3] 2013 Tesla K20 700-1000
Mawson [3] 2013 Quadro K5000m 300-400
Delbosc [11] 2016 Tesla K40 1480
Delbosc [11] 2016 GTX 780Ti 1785
Glessmer & Janßen [12] 2017 Quadro M6000 450-700
Tran et al. [58] 2017 Tesla K20 1000-1200
Present Work 2018 GTX 1080Ti 1000-1700

Table 1: Single-precision performance of recent 3DGPU-accelerated LBM implementations. Range of performance due to different
modelling and launch parameter configurations.

xz

y4H

1.5H

H

H

H

4H

3.4H

z- = periodic b.c.

x- = periodic b.c.

z+ = periodic b.c.

x+ = periodic b.c.

y+ = no-slip b.c.

y- = no-slip b.c.

Figure 5: Case configuration for 3D turbulent channel flow with array of wall-mounted cubes.

to queue while memory transactions are carried out. The typical performance of a 3D, single-precision183

LBM implementation on a single GPU are tabulated in Table 1 from the literature. Peak performance184

can be anything up to 1800 MLUPS depending on the device and model complexity used. We include185

our own performance results to Table 1 for comparison and find them to be in line with the state of the186

art with improved performance over existing implementations largely due to use of the next generation187

of GPU hardware.188

To maximise performance, the LBM configuration used in this work is deliberately basic. The BGK189

collision operator [61] is used, which is the least expensive from a computational perspective. Rigid190

wall boundaries, are implemented as simple bounce-back boundary conditions [62], which are second-191

order accurate in the cell size. A Smagorinsky turbulence model [63] is also implemented to provide192

additional stability and flow through the domain may be introduced using either the forcing scheme193

of Guo [64] or a forced-equilibrium inlet/outlet boundary. In the latter, the values of f are set equal194

to feq(ρ, ~u) where ρ and ~u are desired free-stream conditions. These configurations give a stable and195

efficient flow simulation with a good degree of accuracy.196

2.2. Validation and Performance197

In order to validate the solver, we simulate a 3D turbulent channel containing an array of rigid, wall-198

mounted cubes. This case is representative of an external flow around an object in a wind tunnel. Ex-199

perimental data is available from Meinders and Hanjalic̀ [65] and Hellsten et al. [66] for the purposes200

of comparison. The simulation domain is shown in Fig. 5.201

7



The number of lattice sites based on the reference lengthH = 50 This resolution gives a total number202

of cells of approximately 6.8M. Body forcing is used to accelerate the flow from rest which is iteratively203

adjusted to ensure the volume flow rate computed over the inlet face matches that of the reference case.204

When the mass flow rate through the domain is tuned to within< 1% of the target value, the simulation205

is run for 200 domain flowswhile velocity components and their 3Dfirst order products are cumulatively206

averaged in time. The Smagorinsky model available in the solver is enable to account for the coarse207

resolution used. Table 2 documents the parameters used for the simulation. The simulation is executed208

on eight NVIDIA GTX 1080Ti GPUs.209

Parameter Value
Cube Height H 0.015m
Reference Velocity Uref 3.86m/s
Reference Time tref 0.00389s

Dimensionless Force 0.006229
Smag. Constant cs 0.3
Lattice Spacing dx 0.02
Dimensionless Timestep dt 0.0011
Reynolds Number 3831
Lattice Viscosity ν 0.000718
Relaxation Time τ 0.502153

Table 2: Values used to simulate the 3D turbulent wall-mounted cube case of [65].

The peak performance of the solver on a single GPU has been presented against other implementa-210

tions in Table 1. However, based on the observations of Harwood and Revell [14], it is essential to be able211

to extend the calculation over multiple GPUs to maintain the required evolution rate of the simulation212

as resolution increases. The domain is decomposed in 1D in the Z-direction. A halo region is used to213

pass data between devices and is chosen to be 16 cells thick based on the recommendation of [67].214

2.2.1. Results215

The stream-wise and span-wise velocity profiles are plotted in a selection of vertical and horizontal216

locations. All values of velocity are normalised with respect to the bulk velocity Ub, computed by inte-217

grating the time-averaged stream-wise velocity Ux over the inlet face of the domain and dividing by the218

area. Vertical slices are shown in Fig. 6 and horizontal slices in Fig. 7.219

The simulation results show excellent agreement with the experimental results despite not using any220

wall modelling and only a modest resolution.221

8



-1 0 1 2
0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

-1 0 1 2
0

0.5

1

1.5

2

2.5

3

3.5

-1 0 1 2
0

0.5

1

1.5

2

2.5

3

3.5

-1 0 1 2
0

0.5

1

1.5

2

2.5

3

3.5

(a) Averaged Ux velocity at different stream-wise locations
compared with the experimental results.

0 0.02 0.04 0.06
0

0.5

1

1.5

2

2.5

3

3.5

0 0.05 0.1 0.15
0

0.5

1

1.5

2

2.5

3

3.5

0 0.05 0.1
0

0.5

1

1.5

2

2.5

3

3.5

0 0.05 0.1
0

0.5

1

1.5

2

2.5

3

3.5

0 0.05 0.1
0

0.5

1

1.5

2

2.5

3

3.5

(b) Averaged U ′xU
′
x stress component at different stream-

wise locations compared with the experimental results.

0 0.02 0.04 0.06
0

0.5

1

1.5

2

2.5

3

3.5

0 0.05 0.1
0

0.5

1

1.5

2

2.5

3

3.5

0 0.02 0.04
0

0.5

1

1.5

2

2.5

3

3.5

0 0.05 0.1
0

0.5

1

1.5

2

2.5

3

3.5

0 0.05 0.1
0

0.5

1

1.5

2

2.5

3

3.5

(c) Averaged U ′zU
′
z stress component at different stream-

wise locations compared with the experimental results.

Figure 6: Simulated velocity profiles and Reynolds stresses (solid line) along vertical lines compared with experimental data of
[65] and [66] (circles).

9



0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) Averaged Ux velocity at different stream-wise locations
compared with the experimental results.

-0.1 0 0.1 0.2
0

0.5

1

1.5

2

2.5

-0.05 0 0.05 0.1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-0.1 0 0.1 0.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-0.2 -0.1 0 0.1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-0.2 -0.1 0 0.1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b) Averaged Uz velocity at different stream-wise locations
compared with the experimental results.

0 0.02 0.04 0.06
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.02 0.04 0.06
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.02 0.04 0.06
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.02 0.04 0.06
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(c) Averaged U ′xU
′
x stress component at different stream-

wise locations compared with the experimental results.

0 0.02 0.04 0.06
0

0.5

1

1.5

2

2.5

0 0.01 0.02 0.03
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.01 0.02 0.03
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.02 0.04 0.06
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.05 0.1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(d) Averaged U ′zU
′
z stress component at different stream-

wise locations compared with the experimental results.

-0.04 -0.02 0 0.02
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-0.02 -0.01 0 0.01
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-0.02 -0.01 0 0.01
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-0.04 -0.02 0 0.02
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-0.04 -0.02 0 0.02
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(e) Averaged U ′xU
′
z stress component at different horiz

stream-wise compared with the experimental results.

Figure 7: Simulated velocity profiles and Reynolds stresses (solid line) along horizontal lines (half channel width as symmetric)
compared with experimental data of [65] and [66] (circles)

10



3. Object Capture222

In order to simulate the air flow around a wide variety of objects, our object capture software is223

able to construct compatible representations for objects supplied digitally or physically. The former is224

usual in engineering where products or components are routinely built digitally. However, the latter225

capability enables the simulation of flow around objects for which a digital counterpart does not exist.226

Examples could be clay-sculpted design prototypes in the automotive industry or pupil-built models in227

a classroom environment.228

The aim of the object capture library component of the virtual wind tunnel is to capture surface229

information and to translate this information into two necessary representations:230

• A suitable set of boundary conditions for the solver231

• A suitable visual mesh for the game232

Justification for these two representations is detailed in Section 5.2 as it relates to the integration233

strategy employed. Surface information is readily available fromCAD software in the form of an STL file234

export. However, capturing reliable surface data for physical 3D objects is challenging. Depth-sensing235

camera technology is a potential solution, with the Kinect camera by Microsoft shown to be a capable,236

low-cost sensor [68–72]. A free software development kit (SDK) is provided to enable interfacing with237

the hardware. It is a popular choice for indoor robotics, object recognition and 3D scene reconstruction238

[73].239

The Kinect camera uses triangulation of a structured light pattern reflected from the surface of a240

physical object to capture surface data. The field of view of the Kinect 2 camera is able to capture the241

3D position of 512 × 424 = 217, 088 points [74]. In order to obtain a complete picture of the object, we242

use an aluminium frame to position six Kinect cameras around a transparent table on which physical243

objects may be placed.This laboratory set up is shown in Fig. 8a. The transparent table allows both the244

capture of the bottom surface of objects and for objects to appear in the centre of the capture space.245

Once capture has taken place, the point clouds from each camera are registered using the Point Cloud246

Library (PCL) [75]. As position and orientation of the cameras is fixed, the cloud may be automatically247

clipped to the capture space and the cloud aligned to the floor using calls to the PCL API. In order to248

enable floor alignment, the relative translation and orientation of one of the cameras (used as a reference249

camera) must be known in advance. Its point cloud is then the first to be transformed so it aligns with250

the desired global reference frame (level with the table-top and facing the ‘forward’ direction). This251

orientation is determined when setting up the lab by performing a calibration test; a cube is scanned252

and then an approximate transform applied to the global reference frame. This transformation is then253

successively refined until the point cloud faces are determined to be oriented correctly with the global254

reference frame. The approximate transformation is necessary to ensure convergence o the desired ori-255

entation. The transform is then stored and used to calibrate the registration process.256

Data obtained from Kinect, like all optical depth-sensors, can be noisy, particularly when structure257

light falls on sharp edges or interfaces between materials of contrasting reflectivity. Automatic noise258

removal filters, such as a Radial Outlier Removal (ROR) filter, can be applied although tuning the al-259

gorithms involved for consistent performance is difficult. Alternatively, manual intervention can be em-260

ployed to clean up the registered point cloud. The final step implemented by the object capture library261

is to employ the ball pivoting algorithm [76] to triangulate the point cloud to form a surface mesh which262

may be exported as an STL file. The complete processing pipeline is depicted in Fig. 8b.263

11



(a) Photograph of the laboratory set up for scanning 3D physical objects.

Get Frame (U,V,D)

Map (U,V,D) -> (X,Y,Z)

Noise Filter (ROR)

Normal Estimation

Camera Space Clip Box

Transform to World

Registration (ICP)

Axis Alignment

Triangulation

Export Dual Mesh

(b) Breakdown of the steps involved
when processing the data acquired from
the Kinect cameras. All steps can be
achieved through the PCL and Kinect
APIs.

Figure 8: A photograph of the scanning laboratory and a summary of the processing pipeline used to transform the data from the
cameras into point cloud and surface mesh assets.

4. Game Development264

Unreal Engine 4.16 (UE4) is chosen as the game engine onwhich to base the application. This engine265

is considered most suitable due to its maturity and wide range of capabilities. As the intended appli-266

cation for the game is to simulate a wind tunnel, a suitable map (UMap) was created in the editor using267

custommesh assets (UAssets) to reflect this virtual environment. These assetswere created using the 3D268

modelling software Blender [77] and imported from an FBX format into the editor along with generated269

UV maps and collision meshes. Suitable materials were assigned and any dynamic behaviour (such as270

a rotating fan) programmed using the visual scripting interface within the UE4 editor. A single player271

was added to the map with controller configurations inherited from the built-in VR classes suitable for272

use with the HTC Vive VR hardware. Particle-based visual effects were placed upstream in the tunnel273

to provide smoke streaks, a common technique for experimental flow visualisation and often replicated274

in virtual simulation environments [78].275

4.1. Player Capabilities276

For the game to be useful as a design and analysis tool, users must have a degree of run-time inter-277

action with the environment and the solver. An in-game menu is the main device for interacting with278

the simulation. However, some capabilities are mapped to controller buttons.279

In addition to the ability to cycle through different objects at run-time, the user may rotate the object280

to investigate the affect on flow angle on flow behaviour. This rotation is implemented in just a single281

plane at present although its extension to other axes is trivial. The rotation of the object can be reset at282

any time from the menu.283

Some VR systems (like the HTC Vive) provide a tracking system to allow a user to physically move284

around the space through walking in the real world. This positional tracking is harnessed to allow the285

user tomove around inside thewind tunnel in the sameway. However, as the environment is larger than286

the capture region for the VR positional tracking, a teleportation system was implemented. Triggered287

by controller buttons, a user may glide forwards or backwards in the direction they are facing to allow288

them to traverse larger distances.289

12



(a) Single-nozzle wand (b) Multi-nozzle wand

Figure 9: Screen capture of a user using the smoke wand capability to visualise the 3D flow field around the object.

(a) Streak Line configuration (b) Smoke Sheet configuration

Figure 10: Demonstration of the two different tunnel smoke configurations. The smoke sheet may be moved in the vertical plane
at run-time.

The visual representation of the controller in the game is changed for a mesh asset build to look like290

a smoke wand. The controller trigger may be used in the sameway to activate a particle system attached291

to the controller tip. A screen capture of this capability in use is shown in Fig. 9. The user may also swap292

the single-nozzle wand for a multi-nozzle rake wandwith seven, coloured particle streaks whose smoke293

provides an indication of flow rotation.294

The general smoke visualisation in the tunnel may either be in the form of smoke streaks or a smoke295

sheet. The latter may be positioned at regularly-spaced, discrete locations above the tunnel floor. Both296

configurations of tunnel smoke are shown in Fig. 10.297

Finally, the user may adjust the Reynolds number (velocity) of the simulated fluid flow where the298

Reynolds number is defined based on the inlet velocity and the tunnel height.299

4.2. User Interface Design300

Mapping capabilities to controller buttons soon becomes impractical as the number of interactions301

increase. Hence, we proposed an in-game menu attached to the top of the left-hand controller. It may302

be shown or hidden using the a button on the controller. The options are sorted into categories that303

each have a corresponding pane of buttons which can be displayed on the right-hand side of the menu304

widget. The left-hand side thus offers category selection. The user may point at a button on either pane305

and press a controller button to select it. The four menu panes are shown in Fig. 11 containing all of the306

features of the tunnel.307

13



(a) Smoke menu (b) Model menu

(c) Wand menu (d) Environment menu

Figure 11: Screen captures of the different menu views currently implemented in the virtual wind tunnel user interface.

5. Component Integration308

Having described the individual components required to build the virtual wind tunnel, we next309

describe our integration of these components and highlight the general challenges this poses. An overall310

schematic of how the components integrate is shown in Fig. 12311

5.1. Solver Integration312

To ensure modularity of the software, the LBM solver is compiled as a standalone library encapsulat-313

ing all the dependencies required to run a flow calculation. A façade software design pattern is the used314

to provide anAPI for the library as shown in Fig. 13. This decision allows the LBM solver to be embedded315

in any number of external applications without the need to reference any third-party dependencies.316

However, in order to allow the game to access the data provided by the library, a new actor is created317

and embedded inside the game world. This actor is added to the map through the editor and given a318

bounding box visual representation which correspond to the computational domain boundaries. Its be-319

haviour is defined such that the game enginewill tick the actor during run-time execution. This provides320

a mechanism for synchronised triggering of simulation iterations at the maximum update rate possible.321

We call this actor class LbmPhysics and game components may interact with it as with any other actor322

in the game. It is defined in Appendix A and is responsible for invoking LBM library methods. A view323

of the virtual wind tunnel map with the LbmPhysics actor highlighted is shown in Fig. 14.324

Finally, in order to have the particle streaks in the game describe the simulated field, the LbmPhysics325

actor is assigned a UVectorFieldComponent. This is a UE4 actor, distributed with the engine, capable326

of storing a 3D vector field. Particle systems in the map interpret this vector data as a velocity field and327

will trace the vectors when passing through its region of influence. The contents of the vector field are328

updated through the library API where vector field cells pull data from the underlying LBM grid.329

5.2. Object Integration330

The object capture module, like the solver, is built as a library and referenced by the both the game331

and the solver to allow access to its capabilities at run-time. The module is capable of generating both a332

point cloud and an STL surface mesh via run-time calls to the API. Both the solver library and the game333

need to be made aware separately of the change of object event. This is because the game represents334

object as a UStaticMeshComponent attached to a static mesh UAsset and the solver represents the object335

as a set of solid wall boundary conditions. These two different representations therefore need handling336

in two different ways.337

The assets representing the objects in the game (e.g. mesh, materials and textures) must be present338

in the game content directories before launch. The LbmPhysics actor is instructed to load these assets on339

request, thus changing the visual representation of the object the user sees. As most CAD software used340

14



Visualisation Engine

VR Headset

& Controllers

Kinect

Cameras

Get Kinect Frame

Reduce Data (Clip)

Filter Noise

Estimate Normals

Align to World (Rough)

Register Clouds

Align to Axes

Triangulation

Texture Mapping

Host Initialise

Device Initialise

Launch Device Kernel

Update Host & Device

Solver

Object

Capture

Parameter Changed

Create/Destroy Particle System

Spawn/Kill Particles

Change Viewpoint

Trigger Pressed

Head Moved

UE4

Particle

Engine

UE4

Camera

Engine

Tick

Process Point Cloud
Update Vector Field

Tick

Tick

UE4

Render

Engine

Tick

Update Mesh

Write Asset

Update View

Refresh

Requested

Figure 12: Schematic outlining how the solver and capture components integrate within the game.

Grid LBM

DEVICEHOST

Utilities

Constants

Problem 

Definitions

Standard 

Headers

CUDA Kernels

Device Memory

Lattice
Contents

Host Memory

Lattice
Contents

Namespace

Class

Header

PCI Bus

In
te

rf
ac

e

External

Application

Library

Figure 13: Illustration of the structure of the GPU-accelerated LBM library used as the physics solver in the virtual wind tunnel.

15



Figure 14: The virtual wind tunnel map as seen in the UE4 editor. The custom LbmPhysics actor for interfacing with the physics
solver is highlighted in orange.

(a) Raw point cloud

36.535.534.533.532.531.530.529.528.527.526.525.524.523.522.521.520.519.518.517.516.515.514.513.512.511.5

X

10.59.58.57.56.55.54.53.52.51.50.50.51.52.53.54.55.56.57.5

Y

8.59.510.511.512.513.514.5

0.5

11.5
12.5
13.5

2.5
1.5

15.5

3.5
4.5
5.5

14.5

6.5
7.5
8.5
9.5

10.5

15.5

Z

(b) Voxelised representation (c) Solid boundary condition

Figure 15: Illustration of the stages in mapping a point cloud, under the voxel grid filter, to an LBM, label-based boundary repre-
sentation.

in engineering will most likely export meshes without a texture (UV) map, open-source tools such as341

Blender [77] must be used to prepare the mesh accordingly and must be done as a pre-processing step342

offline.343

In order to generate the boundary conditions for the LBM solver, the point cloud produced by the344

object capture pipeline is passed to the library at run-time. The library then applies a voxel grid filter to345

the data, essentially sampling it to the LBM grid and labelling cells which contain at least one point as346

solid. A very course, illustrative example of this process is shown in Fig. 15.347

Rotation of the object is therefore implemented as two sequential function calls by the game:348

1. rotate the visual mesh asset in the game349

2. reinitialise the boundary conditions in the LBM simulation350

The consequence of this is that the visual representation of the object is a fixed mesh with a static repre-351

sentation of the boundary, whereas the representation of the object in the solver is resolution-dependent;352

if resolution of the simulation is very course, definition of the object seen by the simulation reduces de-353

spite the visual mesh remaining unaltered. Alternate representations such as BFL-type boundary con-354

ditions [79] can be used to improve the accuracy but at the expensive of slowing the solver down due to355

additional effort in computing the flow at the boundaries.356

6. Measuring the Performance of Interactive Simulations357

In Table 1, we quantified the performance of our CFD solver in terms of the metric MLUPS, an inter-358

pretation of computational throughput favoured by the LBM community. However, when measuring359

16



R
ea

l-T
im

e 
Thr

es
ho

ld

Time Taken to Simulate (dtwall)

T
im

e 
S

im
u
la

te
d
 (

d
t s

im
)

dtwall = dtsimdtwall = 1/fps

Interactiv
e

Minim
um Flow Lim

it

T
h
re

sh
o
ld

 o
f 

In
te

ra
ct

iv
it

y Increasing Tr

Increasing MLUPS

Figure 16: The relationship between wall clock time and simulated time and identification of the target range of real-time ratio Tr

for interactive simulations. Tr represents the gradient of any line drawn on the axes. An increase in the traditional throughput
measure of the LBM community (MLUPS) moves any point on the graph to the left. The Threshold of Interactivity represents the
lowest tolerable frame rate for continuous viewing and theMinimum Flow Limit represents the lowest tolerable rate of convection
of a structure of interest in the flow being studied.

the performance of interactive simulations, this is not sufficient. In [14], the ratio of the time step used in360

the simulation dtsim and how long it takes our computing hardware to simulate that time step dtwall is361

defined as the Real-Time Ratio Tr A Tr ≤ 1 defines a simulation running at or slower than real-time, typ-362

ically the region achievable for interactive simulations at present depending on the accuracy required.363

Here we extend the concept of real-time ratio further by considering the use case of interactive sim-364

ulations: a typical user wants to run a simulation on a given flow problem such that365

• They can smoothly view a quantity of interest while the simulation is running;366

• Structures of interest convect through the visualised domain at an appropriate speed for study;367

The first requirement imposes a maximum tolerable wall clock time before the results are updates368

so infrequently that visualisation will appear ‘choppy’. Typically, humans require at least 24 frames per369

second (fps) for smooth viewing. We define this limit as the Threshold of Interactivity. The second re-370

quirement imposes a limit on the Tr. For a given time scale in the simulation (represented by dtsim),371

the throughput should be sufficiently high (or wall clock time sufficiently low) to update the results372

frequently enough that structures of interest move at an appropriate speed. We define this as the Min-373

imum Flow Limit. Thus we have bounded our simulation configuration below the Real-Time Threshold374

≡ Tr = 1 based on the user requirements as depicted in Fig. 16. It is important to note, that increasing375

the throughput of computing devices will reduce the dtwall, driving points to the left of the graph. This376

will also increase Tr accordingly.377

Using these principles, we can identify for a range of scenarios how effective our virtual wind tunnel378

implementation is for interactive simulation. The relevant tests are deferred for the production article.379

6.1. Limitations380

The implementation presented here is a prototype systemoriginally designed for automotive external381

aerodynamic design. However, there is huge potential for extension andmigration to other applications.382

In particular, this concept may be used with little modification to read in medical geometry and to sim-383

ulate the flow of bodily fluids. Thus, the tool may be used as an interactive tool for medical analysis.384

However, there are a number of limitations associated with the prototype which need to be addressed385

before applications are be broadened.386

17



Reliance on existing but inflexible UE4 visualisation components means that the loose coupling be-387

tween the solver and visualisation degrades utility. Custom visualisation of the flow field may be im-388

plemented by modifying the engine code. Shaders could be written to take GPU field data and set pixel389

values accordingly [15, 80]. This tight integration of simulation and visualisation is a key enabler for390

the technology.391

When using the VectorField actor in UE4 to control the particle motion, a new vector field must be392

constructed anew fromGPUdata using the classes provided by the engine and swappedwith the current393

version at flow update intervals. In practice, this requires both the passing of information between394

the device (GPU) and the host as well as the repacking of data into the VectorField structure. This395

bottleneck can be treated in future in two stages: first, the LBM data on the GPU must be structured396

such that it maps directly onto the vector field source data without the need for reassembly on the host;397

second, bymodifying the particle simulation classes in the game engine source to allow direct swapping398

of vector field source data resources.399

Furthermore, a single vector field is restricted in size by the largest texture unit supported by the400

engine (1283). This limits the overall size of the simulation if the LbmPhysics actor were to support just401

a single vector field. A restriction on resolution, would therefore restrict accuracy. This issue may be402

addressed by attaching multiple vector fields to a single LbmPhysics actor with vector field construction403

performed using asynchronous background tasks to maintain parallelism.404

Finally, using a game engine as the main time marching mechanism means that solver iterations are405

directly coupled the frequency of the game. This frequency is generally set at between 60-90Hz. Even406

with sub-cycling the solver, the frequency with which the simulation advances may not be high enough407

for real-time simulation. Although it is not necessary to be real-time (but merely interactive) in some408

cases [81], the game and solver ought to be coupled asynchronously to remove this tight coupling in409

time and allow the solver to run as fast as possible.410

Finally, UE4 gamesmust have all their visual mesh assets at compile-time. This is a UE4 specification411

to enable efficient rendering of 3D objects, however, it does prevent the generation of new objects for the412

virtual wind tunnel at run-time in the present iteration.413

7. Conclusions414

This paper has presented an real-time interactive, virtual wind tunnel for engineering design and415

development. The design and implementation has been detailed and validation and performance of416

the underlying LBM solver given. Simulated results for the turbulent flow over a cube in a channel at a417

modest resolutionwith nowallmodelling shows excellent agreementwith experimental data. Execution418

of the 6.8M cell calculation was performed on commodity GPU hardware. A second simulation, with419

no modelling was performed on a turbulent channel of Reτ = 180 and showed near perfect agreement420

with DNS data.421

The virtual wind tunnel integrates object scanning and CAD import work-flow into a 3Dwind tunnel422

world, offering in-game user interaction with the real-time simulation kernel and visualisation customi-423

sation through an in-gamemenu. Interactionwithin the virtual wind tunnel game is routed to the solver424

through a single façade class which allows it to be used in different games with potentially different con-425

texts. A range of smoke-based visualisation options are available and controllers may be used as smoke426

wands for unobstructed, flexible investigation of the flow behaviour.427

Performance bottlenecks in the design of integrating into UE4, which inhibit scalability, have been428

identified and are the focus of current research. Possible avenues for application extension have also429

been presented. As the LBM component is built as a library, it may already be used in other contexts430

with little or no modification.431

Finally, the use of virtual reality and game-engine integration provides a novel, immersive experience432

for visualisation and huge potential for intuitive investigation and analysis. Coupling this mechanism433

with a physically-accurate solver approaching real-time speeds in 3D, has created a novel and powerful434

tool with a high potential for impact and future extension.435

Acknowledgements436

This work was supported by Engineering and Physical Science Research Council Impact Accelerator437

Account (grant number: EP/K503782/1).438

18



A. LbmPhysics Actor439

The LbmPhysics actor used to couple the solver to the game is defined as follows:440

// ∗∗∗∗∗∗∗∗∗∗∗∗∗ LbmPhysics . h ∗∗∗∗∗∗∗∗∗∗∗∗441

442

// New s t r u c t u r e t o p a s s p o i n t e r s t o LBM da t a t o a V e c t o r F i e l d c o n s t r u c t o r443

c l a s s DataPointers444

{445

public :446

i n t 32 DataX ;447

i n t 32 DataY ;448

i n t 32 DataZ ;449

FBox Bounds ;450

i n t 32 numPoints ;451

f l o a t const ∗ const X ;452

f l o a t const ∗ const Y ;453

f l o a t const ∗ const Z ;454

455

// Con s t ru c t o r wi th i n i t i a l i s e r s456

DataPointers ( in t32 Nx, in t32 Ny, in t32 Nz, const f l o a t ∗lbmBounds ,457

const f l o a t ∗Ux, const f l o a t ∗Uy, const f l o a t ∗Uz)458

: DataX(Nx) , DataY(Ny) , DataZ(Nz) , X(Ux) , Y(Uy) , Z(Uz)459

{460

461

// Ass ign bounds462

Bounds .Min .X = ∗lbmBounds++;463

Bounds .Min .Y = ∗lbmBounds++;464

Bounds .Min .Z = ∗lbmBounds++;465

Bounds .Max .X = ∗lbmBounds++;466

Bounds .Max .Y = ∗lbmBounds++;467

Bounds .Max .Z = ∗lbmBounds++;468

469

// Number o f p o i n t s470

numPoints = Nx ∗ Ny ∗ Nz;471

472

} ;473

474

} ;475

476

UCLASS()477

c l a s s JLR_VWT_API ALbmPhysics : public AActor478

{479

GENERATED_BODY()480

481

public :482

483

// ///////////484

/∗ METHODS ∗/485

// ///////////486

487

// Con s t ru c t o r and d e s t r u c t o r488

ALbmPhysics ( ) ;489

~ALbmPhysics ( ) ;490

491

// Ca l l e d when t h e game s t a r t s o r when spawned −− r e a d s in a l l t h e s t a t i c492

meshes represent ing the ob j e c t v i sua l s ; binds to the po in te r s from where493

the ve l o c i t y data can be found to cont ruc t the vec tor f i e l d s494

v i r tua l void BeginPlay () overr ide ;495

19



496

// Ca l l e d e v e r y f rame −− f i r e s t h e LBM s o l v e r t ime s t e p and r e c r e a t e s497

vector f i e l d in the game498

v i r tua l void Tick ( f l o a t DeltaSeconds ) overr ide ;499

500

// Methods t o i n t e r a c t wi th t h e s o l v e r t h a t must be a c c e s s e d through501

b luepr in t s f i r ed from menu s e l e c t i o n s −− these are e s s e n t i a l l y c a l l s to the502

so lver API503

UFUNCTION( Bluepr in tCa l lab le , Category = " In t e r a c t i on " )504

void setRe ( f l o a t reynolds ) ;505

506

UFUNCTION( Bluepr in tCa l lab le , Category = " In t e r a c t i on " )507

void resetSim ( ) ;508

509

UFUNCTION( Bluepr in tCa l lab le , Category = " In t e r a c t i on " )510

void ro t a t eOb j e c t ( f l o a t degrees , bool rep lace ) ;511

512

UFUNCTION( Bluepr in tCa l lab le , Category = " In t e r a c t i on " )513

void swapObject ( in t32 ob j e c t idx ) ;514

515

UFUNCTION( Bluepr in tCa l lab le , Category = " Sol id ␣Objec ts " )516

i n t 32 getNumberOfObjectsAvailable ( ) ;517

518

// Method t o c r e a t e a V e c t o r F i e l d S t a t i c wi th t h e d a t a p r o v i d e d as a519

MyFFGAContents s t ru c tu r e520

UObject∗ Crea t eVec to rF i e ldS t a t i c ( DataPointers ∗Data , UClass ∗ InClass ,521

UObject ∗ InParent , FName InName ) ;522

523

// Method t o b u i l d a PC from a f i l e524

bool readPointCloudPoints (PCpts∗ &_PCpts , FSt r ing f i lename ) ;525

526

527

// /////////////////////528

/∗ SOLVER PROPERTIES ∗/529

// /////////////////////530

531

// LBM s o l v e r i n t e r f a c e532

Lumis∗ LumisInter face = nu l lp t r ;533

534

// Reyno lds number535

UPROPERTY(EditAnywhere , BlueprintReadWrite , Category = "LBM" )536

i n t 32 ReynoldsNumber = 5000 ;537

538

// Update f r e q u en c y539

UPROPERTY(EditAnywhere , Category = "LBM" )540

i n t 32 TicksPerRefresh = 10 ;541

542

// Fudge f a c t o r543

UPROPERTY(EditAnywhere , Category = "LBM" )544

f l o a t FudgeFactor = 20 .0 f ;545

546

// Current o b j e c t s e l e c t e d547

UPROPERTY(BlueprintReadWrite , Category = " Sol id ␣Objec ts " )548

i n t 32 currentOb jec t = 0 ;549

550

551

// ///////////////////////////552

/∗ VECTOR FIELD PROPERTIES ∗/553

20



// ///////////////////////////554

555

// S t r u c t u r e with i n f o f o r b u i l d i n g a v e c t o r f i e l d o b j e c t556

DataPointers ∗FieldData ;557

558

// V e c t o r F i e l d ( s ) t h a t r e p r e s e n t t h e LBM s o l v e r v e l o c i t y f i e l d559

TArray<UVectorFieldComponent∗> Veloci tyFie ldSegments ;560

561

562

// ////////////////563

/∗ Gene ra l Data ∗/564

// ////////////////565

566

// Domain s i z e ( as r e t u rn e d by t h e Lumis I n t e r f a c e a f t e r c r e a t i o n )567

i n t 32 Nx ;568

i n t 32 Ny;569

i n t 32 Nz ;570

571

// HUD t e x t r e t r i e v a l572

UFUNCTION( Bluepr in tCa l lab le , Category = "VR␣HUD" )573

FStr ing ge tS t a tTex t ( ) ;574

575

private :576

577

// S t r i ng c o n t a i n i n g s t a t u s i n f o rma t i o n578

FStr ing hud_string ;579

580

// P o i n t e r t o t h e HUD so we can change t e x t e t c . b a s e d on LBM s o l v e r581

s e t t i n g s582

ALbmHUD∗ hud ;583

584

// L i s t o f s t a t i c meshes t o be used f o r v i s u a l o b j e c t swapping585

TArray<UStaticMesh∗> swappableMeshes ;586

587

// L i s t o f p o i n t c l o u d s f o r e a ch o b j e c t588

TArray<PCpts∗> pointClouds ;589

590

// L i s t o f f i l e names o f t h e o b j e c t s & p o i n t c l o ud s t o be l o a d e d ( from591

ob j e c t capture p ipe l ine )592

TArray<FStr ing> objectNames ;593

594

// Array o f o b j e c t l e n g t h s and p o s i t i o n s595

TArray<f loa t> ob j e c t Po s i t i on s ;596

TArray<f loa t> objec tLengths ;597

598

// Domain e x t e n t s s p e c i f i e d in UE c o o r d i n a t e s599

UPROPERTY(VisibleAnywhere , Category = "LBM" )600

FVector DomainExtents = FVector (540 .0 f , 540 .0 f , 270 .0 f ) ;601

602

// Ob j e c t bounding box in UE r e l a t i v e c o o r d i n a t e s603

FBox ObjectBox ;604

605

// Domain s i z e i n f o rma t i o n606

FVector DomainBoxScaling ;607

608

// P o i n t e r t o t h e mesh components which r e p r e s e n t s t h e domain and t h e o b j e c t609

UStaticMeshComponent∗ BoxVisual ;610

UStaticMeshComponent∗ Objec tVisual ;611

21



612

// Method f o r r e a d i ng in t h e meshes from th e f i l e in t h e Input d i r e c t o r y613

i n t 32 readObjectDataFromInputFile ( ) ;614

615

// P r i v a t e method f o r add ing a pre−l o a d e d o b j e c t mesh t o t h e tunne l616

void setObjectMesh ( in t32 ob j e c t idx ) ;617

618

// Number o f o b j e c t s a v a i l a b l e619

i n t 32 numObjects ;620

621

} ;622

References623

[1] D. Gatti, Turbulent Skin-Friction Drag Reduction at High Reynolds Numbers, Springer Interna-624

tional Publishing, Cham, 2016, pp. 389–398.625

[2] S. Chen, G. D. Doolen, Lattice Boltzmann Method for Fluid Flows, Annual Review of Fluid Me-626

chanics 30 (1) (1998) 329–364.627

[3] M. Mawson, Interactive Fluid-Structure Interaction with Many-core Accelerators, Ph.D. thesis,628

School of Mechanical, Aerospace & Civil Engineering, The University of Manchester (2013).629

[4] N. Delbosc, J. Summers, A. Khan, N. Kapur, C. Noakes, Optimized implementation of the Lattice630

Boltzmann Method on a graphics processing unit towards real-time fluid simulation, Computers631

& Mathematics with Applications 67 (2) (2014) 462 – 475, mesoscopic Methods for Engineering632

and Science (Proceedings of ICMMES-2012, Taipei, Taiwan, 23-27 July 2012).633

[5] A. Bernard, Virtual engineering: Methods and tools, Proceedings of the Institution of Me-634

chanical Engineers, Part B: Journal of Engineering Manufacture 219 (5) (2005) 413–421.635

doi:10.1243/095440505X32238.636

[6] S. Bryson, C. Levit, The Virtual Windtunnel: An Environment for the Exploration of Three-637

Dimensional Unsteady Flows, in: Visualization, 1991. Visualization ’91, Proceedings., IEEE Con-638

ference on, 1991, pp. 17–24, 407. doi:10.1109/VISUAL.1991.175771.639

[7] G. S. Strumolo, V. Babu, Method and system for providing a virtual wind tunnel, uS Patent640

6,088,521 (2000).641

[8] A. Borrmann, P. Wenisch, C. van Treeck, E. Rank, Collaborative computational steering: Principles642

and application in hvac layout, Integr. Comput.-Aided Eng. 13 (4) (2006) 361–376.643

[9] P. Wenisch, C. van Treeck, A. Borrmann, E. Rank, O. Wenisch, Computational steering on dis-644

tributed systems: Indoor comfort simulations as a case study of interactive CFD on supercomput-645

ers, International Journal of Parallel, Emergent and Distributed Systems 22 (4) (2007) 275–291.646

[10] J. Linxweiler, M. Krafczyk, J. Tölke, Highly interactive computational steering for coupled 3D flow647

problems utilizing multiple GPUs, Computing and Visualization in Science 13 (7) (2010) 299–314.648

[11] N. Delbosc, Real-time simulation of indoor air flow using the lattice Boltzmann method on649

Graphiscs Processing Units, Ph.D. thesis, School of Mechanical Engineering, The University of650

Leeds (2015).651

[12] M. S. Glessmer, C. F. Janßen, Using an Interactive Lattice Boltzmann Solver in Fluid Mechanics652

Instruction, Computation 5 (3) (2017). doi:10.3390/computation5030035.653

[13] A. R. G. Harwood, A. J. Revell, Parallelisation of an interactive lattice-Boltzmann method on an654

Android-powered mobile device, Advances in Engineering Software 104 (1) (2017) 38–50.655

[14] A. R. G. Harwood, A. J. Revell, Interactive flow simulation using Tegra-powered mobile devices,656

Advances in Engineering Software 115 (Supplement C) (2018) 363 – 373.657

22



[15] A. R. G. Harwood, GPU-powered, interactive flow simulation on a peer-to-peer658

group of mobile devices, Advances in Engineering Software 133 (2019) 39 – 51.659

doi:https://doi.org/10.1016/j.advengsoft.2019.04.003.660

[16] C. Cruz-Neira, J. Leigh, M. Papka, C. Barnes, S.M. Cohen, S. Das, R. Engelmann, R. Hudson, T. Roy,661

L. Siegel, C. Vasilakis, T. A. DeFanti, D. J. Sandin, Scientists in wonderland: A report on visualiza-662

tion applications in the CAVE virtual reality environment, in: Proceedings of 1993 IEEE Research663

Properties in Virtual Reality Symposium, 1993, pp. 59–66. doi:10.1109/VRAIS.1993.378262.664

[17] M. I. Billen, O. Kreylos, B. Hamann, M. A. Jadamec, L. H. Kellogg, O. Staadt, D. Y. Sumner, A665

geoscience perspective on immersive 3D gridded data visualization, Computers & Geosciences666

34 (9) (2008) 1056 – 1072. doi:https://doi.org/10.1016/j.cageo.2007.11.009.667

[18] T. W. Kuhlen, B. Hentschel, Quo Vadis CAVE: Does Immersive Visualization Still Matter?, IEEE668

Computer Graphics and Applications 34 (5) (2014) 14–21. doi:10.1109/MCG.2014.97.669

[19] Open VR, https://github.com/ValveSoftware/openvr, accessed: 2017-12-12.670

[20] J. Jacobson, M. Lewis, Game engine virtual reality with caveut, Computer 38 (4) (2005) 79–82.671

doi:10.1109/MC.2005.126.672

[21] S. Wang, Z. Mao, C. Zeng, H. Gong, S. Li, B. Chen, A new method of virtual reality673

based on unity3d, in: 2010 18th International Conference on Geoinformatics, 2010, pp. 1–5.674

doi:10.1109/GEOINFORMATICS.2010.5567608.675

[22] W. Yan, C. Culp, R. Graf, Integrating BIM and gaming for real-time interactive676

architectural visualization, Automation in Construction 20 (4) (2011) 446 – 458.677

doi:https://doi.org/10.1016/j.autcon.2010.11.013.678

[23] C. Donalek, S. G. Djorgovski, A. Cioc, A.Wang, J. Zhang, E. Lawler, S. Yeh, A.Mahabal, M. Graham,679

A. Drake, S. Davidoff, J. S. Norris, G. Longo, Immersive and collaborative data visualization using680

virtual reality platforms, in: 2014 IEEE International Conference on Big Data (Big Data), 2014, pp.681

609–614. doi:10.1109/BigData.2014.7004282.682

[24] J. Wang, M. Lewis, J. Gennari, A game engine based simulation of the NIST urban search and683

rescue arenas, in: Proceedings of the 2003 Winter Simulation Conference, 2003., Vol. 1, 2003, pp.684

1039–1045 Vol.1. doi:10.1109/WSC.2003.1261528.685

[25] A. C. A. Mól, C. A. F. Jorge, P. M. Couto, Using a Game Engine for VR Simulations686

in Evacuation Planning, IEEE Computer Graphics and Applications 28 (3) (2008) 6–12.687

doi:10.1109/MCG.2008.61.688

[26] J. R. Juang, W. H. Hung, S. C. Kang, Using game engines for physical-based simulations – a fork-689

lift, in: Special Issue: Use of Gaming Technology in Architecture, Engineering and Construction,690

Vol. 16, 2011, pp. 3–22, http://www.itcon.org/2011/2.691

[27] K. Yang, J. Jie, S. Haihui, Study on the virtual natural landscape walkthrough by using692

Unity 3D, in: 2011 IEEE International Symposium on VR Innovation, 2011, pp. 235–238.693

doi:10.1109/ISVRI.2011.5759642.694

[28] A. Falcone, A. Garro, F. Longo, F. Spadafora, Simulation Exploration Experience: A Communi-695

cation System and a 3D Real Time Visualization for a Moon Base Simulated Scenario, in: 2014696

IEEE/ACM 18th International Symposium on Distributed Simulation and Real Time Applications,697

2014, pp. 113–120. doi:10.1109/DS-RT.2014.22.698

[29] A. Li, X. Zheng, W. Wang, Motion Simulation of Hydraulic Support Based on Unity 3D, in: Pro-699

ceedings of the First International Conference on Information Sciences, Machinery, Materials and700

Energy, Advances in Intelligent Systems Research, 2015. doi:10.2991/icismme-15.2015.128.701

[30] U. Rüppel, K. Schatz, Designing a BIM-based serious game for fire safety evacua-702

tion simulations, Advanced Engineering Informatics 25 (4) (2011) 600 – 611, special703

Section: Advances and Challenges in Computing in Civil and Building Engineering.704

doi:https://doi.org/10.1016/j.aei.2011.08.001.705

23



[31] J. Lewis, D. Brown, W. Cranton, R. Mason, Simulating visual impairments using the Unreal Engine706

3 game engine, in: 2011 IEEE 1st International Conference on Serious Games and Applications for707

Health (SeGAH), 2011, pp. 1–8. doi:10.1109/SeGAH.2011.6165430.708

[32] W. Meng, Y. Hu, J. Lin, F. Lin, R. Teo, ROS + Unity: An efficient high-fidelity 3D multi-709

UAV navigation and control simulator in GPS-denied environments, in: IECON 2015 -710

41st Annual Conference of the IEEE Industrial Electronics Society, 2015, pp. 002562–002567.711

doi:10.1109/IECON.2015.7392488.712

[33] W.Qiu, A. Yuille, UnrealCV: Connecting Computer Vision toUnreal Engine, Springer International713

Publishing, Cham, 2016, pp. 909–916.714

[34] K. Yang, J. Jie, The Designing of Training Simulation System Based on Unity 3D, in: 2011 Fourth715

International Conference on Intelligent Computation Technology andAutomation, Vol. 1, 2011, pp.716

976–978. doi:10.1109/ICICTA.2011.245.717

[35] E. Sudarmilah, R. Ferdiana, L. E. Nugroho, A. Susanto, N. Ramdhani, Tech review: Game718

platform for upgrading counting ability on preschool children, in: 2013 International Con-719

ference on Information Technology and Electrical Engineering (ICITEE), 2013, pp. 226–231.720

doi:10.1109/ICITEED.2013.6676243.721

[36] F. King, J. Jayender, S. K. Bhagavatula, P. B. Shyn, S. Pieper, T. Kapur, A. Lasso, G. Fichtinger, An Im-722

mersive Virtual Reality Environment for Diagnostic Imaging, Journal ofMedical Robotics Research723

01 (01) (2016) 1640003. doi:10.1142/S2424905X16400031.724

[37] P. Zhou, X. Wang, U. Morales, Integration of Virtual Reality and CFD Techniques for Ther-725

mal Fluid Education, in: Proceedings of the 2017 Heat Transfer Summer Conference, 2017.726

doi:10.1115/HT2017-4793.727

[38] Frostbite Engine – the most adopted platform for game development – EA, https://www.ea.com/728

frostbite, accessed: 2017-12-12.729

[39] CryENGINE3 – Crytek, http://www.crytek.com/cryengine/cryengine3/overview, accessed:730

2017-12-12.731

[40] Source SDK – Valve Development Community, https://developer.valvesoftware.com/wiki/732

SDK, accessed: 2017-12-12.733

[41] Unity Game Engine, https://unity3d.com/, accessed: 2017-12-12.734

[42] Game Engine Technology by Unreal, https://www.unrealengine.com/en-US/735

what-is-unreal-engine-4, accessed: 2017-12-12.736

[43] Havok Physics, https://www.havok.com/physics/, accessed: 2017-12-12.737

[44] GameWorks PhysX Overview, https://developer.nvidia.com/gameworks-physx-overview,738

accessed: 2017-12-12.739

[45] J. Stam, Stable fluids, in: Proceedings of the 26th Annual Conference on Computer Graphics and740

Interactive Techniques, SIGGRAPH ’99, ACM Press/Addison-Wesley Publishing Co., New York,741

NY, USA, 1999, pp. 121–128. doi:10.1145/311535.311548.742

URL http://dx.doi.org/10.1145/311535.311548743

[46] J. Brackbill, D. Kothe, H. Ruppel, Flip: A low-dissipation, particle-in-cell method for fluid flow,744

Computer Physics Communications 48 (1) (1988) 25 – 38. doi:https://doi.org/10.1016/0010-745

4655(88)90020-3.746

[47] J. M. Cohen, S. Tariq, S. Green, Interactive Fluid-particle Simulation Using Translating Eulerian747

Grids, in: Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and748

Games, I3D ’10, ACM, New York, NY, USA, 2010, pp. 15–22. doi:10.1145/1730804.1730807.749

[48] M. Müller, D. Charypar, M. Gross, Particle-based fluid simulation for interactive applications, in:750

Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation,751

SCA ’03, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 2003, pp. 154–159.752

24



[49] M. Macklin, M. Müller, N. Chentanez, T.-Y. Kim, Unified Particle Physics for Real-time Applica-753

tions, ACM Trans. Graph. 33 (4) (2014) 153:1–153:12.754

[50] J. Bender, M. Müller, M. A. Otaduy, M. Teschner, M. Macklin, A survey on position-based755

simulation methods in computer graphics, Comput. Graph. Forum 33 (6) (2014) 228–251.756

doi:10.1111/cgf.12346.757

[51] K. Sharp, F. Matschinsky, Translation of Ludwig Boltzmann’s Paper “On the Relationship between758

the Second Fundamental Theorem of the Mechanical Theory of Heat and Probability Calculations759

Regarding theConditions for Thermal Equilibrium” sitzungberichte der kaiserlichen akademie der760

wissenschaften. mathematisch-naturwissen classe. abt. ii, lxxvi 1877, pp 373-435 (wien. ber. 1877,761

76:373-435). reprinted in wiss. abhandlungen, vol. ii, reprint 42, p. 164-223, barth, leipzig, 1909,762

Entropy 17 (4) (2015) 1971–2009.763

[52] The lattice Boltzmann method for compressible flows at high Mach number.764

[53] J. Tölke, Implementation of a lattice boltzmann kernel using the compute unified device ar-765

chitecture developed by nvidia, Computing and Visualization in Science 13 (1) (2008) 29.766

doi:10.1007/s00791-008-0120-2.767

[54] C. Obrecht, F. Kuznik, B. Tourancheau, J.-J. Roux, Scalable lattice Boltzmann768

solvers for CUDA GPU clusters, Parallel Computing 39 (6) (2013) 259 – 270.769

doi:https://doi.org/10.1016/j.parco.2013.04.001.770

[55] X. Wang, Y. Shangguan, N. Onodera, H. Kobayashi, T. Aoki, Direct Numerical Simula-771

tion and Large Eddy Simulation on a Turbulent Wall-Bounded Flow Using Lattice Boltz-772

mann Method and Multiple GPUs, Mathematical Problems in Engineering 2014 (2014).773

doi:http://www.doi.org/10.1155/2014/742432.774

[56] M. J. Mawson, A. J. Revell, Memory transfer optimization for a lattice Boltzmann solver on Kepler775

architecture nVidia GPUs, Computer Physics Communications 185 (10) (2014) 2566–2574.776

[57] Y. Koda, F.-S. Lien, The Lattice Boltzmann Method Implemented on the GPU to Simulate the Tur-777

bulent Flow Over a Square Cylinder Confined in a Channel, Flow, Turbulence and Combustion778

94 (3) (2015) 495–512. doi:10.1007/s10494-014-9584-y.779

[58] N.-P. Tran, M. Lee, S. Hong, Performance Optimization of 3D Lattice Boltzmann Flow Solver on a780

GPU, Scientific Programming 2017 (2017). doi:http://www.doi.org/10.1155/2017/1205892.781

[59] W. Li, X. Wei, A. Kaufman, Implementing lattice Boltzmann computation on graphics hardware,782

The Visual Computer 19 (7) (2003) 444–456. doi:10.1007/s00371-003-0210-6.783

[60] NVIDIA, CUDA Toolkit Documentation v9.1.85, http://docs.nvidia.com/cuda/, , Accessed:784

2017-12-12.785

[61] P. L. Bhatnagar, E. P. Gross, M. Krook, AModel for Collision Processes in Gases. I. Small Amplitude786

Processes in Charged and Neutral One-Component Systems, Phys. Rev. 94 (1954) 511–525.787

[62] D. P. Ziegler, Boundary conditions for lattice Boltzmann simulations, Journal of Statistical Physics788

71 (5) (1993) 1171–1177.789

[63] H. Yu, S. S. Girimaji, L.-S. Luo, DNS and LES of decaying isotropic turbulence with and without790

frame rotation using lattice Boltzmann method, Journal of Computational Physics 209 (2) (2005)791

599 – 616. doi:https://doi.org/10.1016/j.jcp.2005.03.022.792

[64] Z. Guo, C. Zheng, B. Shi, Discrete lattice effects on the forcing term in the lattice Boltzmannmethod,793

Physical Review E 65 (2002) 046308.794

[65] E. Meinders, K. Hanjalić, Vortex structure and heat transfer in turbulent flow over a wall-mounted795

matrix of cubes, International Journal of Heat and Fluid Flow 20 (3) (1999) 255 – 267.796

[66] A. Hellsten, P. Rautaheimo, S. Laine, T. Siikonen, 8th ercoftac/iahr/cost workshop on refined tur-797

bulence modelling (Dec 1999).798

25



[67] A. R. G. Harwood, P. Wenisch, A. J. Revell, A Real-Time Modelling and Simulation Platform for799

Virtual Engineering Design and Analysis, in: Proceedings of 6th European Conference on Compu-800

tational Mechanics (ECCM 6) and 7th European Conference on Computational Fluid Dynamics801

(ECFD 7), 11-15 June 2018, Glasgow, UK, ECCOMAS, 2018.802

[68] W. Boehler, A. Marbs, 3D Scanning Instruments, in: Proceedings of the CIPA WG 6 International803

Workshop on Scanning for Cultural Heritage Recording, Ziti, Thessaloniki, 2002, pp. 9–18.804

[69] B. Curless, From Range Scans to 3D Models, ACM SIGGRAPH Computer Graphics 33 (4) (1999)805

38–41.806

[70] T. Butkiewicz, Low-cost coastal mapping using Kinect v2 time-of-flight cameras, in: 2014 Oceans -807

St. John’s, 2014, pp. 1–9.808

[71] P. Fankhauser, M. Bloesch, D. Rodriguez, R. Kaestner, M. Hutter, R. Siegwart, Kinect v2 for mo-809

bile robot navigation: Evaluation and modeling, in: 2015 International Conference on Advanced810

Robotics (ICAR), 2015, pp. 388–394.811

[72] L. Yang, L. Zhang, H. Dong, A. Alelaiwi, A. E. Saddik, Evaluating and Improving the Depth Accu-812

racy of Kinect for Windows v2, IEEE Sensors Journal 15 (8) (2015) 4275–4285.813

[73] J. Smisek, M. Jancosek, T. Pajdla, 3D with Kinect, in: Consumer Depth Cameras for Computer814

Vision, Springer, 2013, pp. 3–25.815

[74] E. Lachat, H. Macher, T. Landes, P. Grussenmeyer, Assessment and calibration of a rgb-d camera816

(kinect v2 sensor) towards a potential use for close-range 3d modeling, Remote Sensing 7 (10)817

(2015) 13070–13097. doi:10.3390/rs71013070.818

[75] R. B. Rusu, S. Cousins, 3D is here: Point Cloud Library (PCL), in: Robotics and Automation819

(ICRA), 2011 IEEE International Conference on, 2011, pp. 1–4.820

[76] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, G. Taubin, The ball-pivoting algorithm for sur-821

face reconstruction, IEEE Transactions on Visualization and Computer Graphics 5 (4) (1999) 349–822

359. doi:10.1109/2945.817351.823

[77] Blender 3D – a 3D modelling and rendering package, http://www.blender.org, accessed: 2017-824

12-12.825

[78] W. von Funck, T. Weinkauf, H. Theisel, H. P. Seidel, Smoke Surfaces: An Interactive Flow Visual-826

ization Technique Inspired by Real-World Flow Experiments, IEEE Transactions on Visualization827

and Computer Graphics 14 (6) (2008) 1396–1403. doi:10.1109/TVCG.2008.163.828

[79] M. Bouzidi, M. Firdaouss, P. Lallemand, Momentum transfer of a Boltzmann-lattice fluid with829

boundaries, Physics of Fluids 13 (11) (2001) 3452–3459.830

[80] N. Koliha, C. F. Janßen, T. Rung, Towards Online Visualization and Interactive Monitoring831

of Real-Time CFD Simulations on Commodity Hardware, Computation 3 (3) (2015) 444–478.832

doi:10.3390/computation3030444.833

[81] A. R. G. Harwood, Interactive Modelling and Simulation for Engineering Design and Analysis,834

NAFEMS Benchmark Magazine Oct 2018 (2018) 20–24.835

26


